بررسی شکست نمونه‌های شیار دار vo ساخته شده از ماده هدفمند تنگستن-مس تحت مود دوم غالب بارگذاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده فنی و مهندسی، دانشگاه شهید باهنر کرمان

2 دانشجوی دکتری دانشکده مهندسی مکانیک دانشگاه تبریز

3 استاد، دانشکده مهندسی مکانیک، دانشگاه تبریز

چکیده

مود دوم غالب بارگذاری در تحلیل شکست مواد هدفمند از اهمیت بالایی برخوردار هست که تاکنون به آن پرداخته نشده است. در این مقاله شکست نمونه‌های شیاردار vo ساخته شده از مواد هدفمند تنگستن-مس تحت بارگذاری مود دوم غالب به صورت عددی و آزمایشگاهی مورد بررسی قرار گرفته است. در بخش آزمایشگاهی، نمونه‌ها با استفاده از روش متالورژی پودر ساخته شده اند و اثر شعاع انحنا و عمق شیار با انجام چندین آزمون شکست تحت مود دوم غالب بارگذاری بررسی شده است. در بخش عددی، برای پیش‌بینی بار بحرانی شکست این نمونه‌ها تحت بارگذاری مود دوم غالب، از معیار متوسط چگالی انرژی کرنشی داخل حجم کنترل استفاده شده است. همچنین علاوه بر بررسی تأثیر شعاع انحنا و عمق شیار، اثر زاویه شیار نیز بر روی بار بحرانی شکست بررسی شده است. تطابق مناسب بین نتایج عددی و آزمایشگاهی تحقیق نشان می‌دهد که تئوری چگالی انرژی کرنشی به خوبی برای نمونه-های شیاردار vo ساخته شده از مواد هدفمند تنگستن مس تحت بارگذاری مود دوم غالب قابل بکارگیری است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Fracture investigation of critical fracture load in V0-noshes made of W-Cu FGM under prevalent mode II loading

نویسندگان [English]

  • Hadi Salavati 1
  • Hamid Samareh 2
  • Mohammad Zehsaz 3
1 Department of Mechanical Engineering, Shahid Bahonar University of Kerman, Kerman, Iran
2 Department of Mechanical Engineering, University of Tabriz
3 Department of Mechanical Engineering, University of Tabriz
چکیده [English]

In this paper, the fracture of V- notches with end holes (VO- notch) in tungsten-copper functionally graded material (W-Cu FGM) under the prevalent mode II loading is studied experimentally and theoretically. W-Cu FGM specimens are made by powder metallurgy technique in the experimental part. Several fracture tests are done on VO- notched W-Cu FGM specimens under prevalent mode loading for different notch tip radii and notch depths. To predict the fracture loads of VO- notched FGM specimens under prevalent mode loading, the Averaged Strain Energy Density (ASED) over a well-defined control volume is applied in the theoretical section. Moreover, the effect of notch tip radius, notch depth and notch opening angle on the fracture loads is investigated. In addition to good agreement between the numerical and experimental results, this study shows that Strain Energy Density (SED) theory works well on VO- notched FGM specimens under prevalent mode loading.

کلیدواژه‌ها [English]

  • Keyword: Functionaly Graded Material
  • VO-notches specimens
  • Prevalrnt mode II loading
  • Strain energy density
[1] Lei, X.  Li, C. Shi, X.  Xu, X. Wei, Y. “Notch strengthening or weakening governed by transition of shear failure to normal mode fracture”, Scientific reports. Vol. 5, pp.10537, 2015.
[2] Sih, G.C. “Strain-energy-density factor applied to mixed mode crack problems”, International Journal of Fracture. Vol. 10, pp. 305, 1974.
[3] Lazzarin, P. Zambardi, R. “A Finite-Volume-Energy Based Approach to Predict the Static and Fatigue Behavior of Components with Sharp V-Shaped Notches”, International Journal of Fracture. Vol. 112, pp. 275-298, 2001.
[4] Lazzarin, P. Berto, F. “Some Expressions for the Strain Energy in a Finite Volume Surrounding the Root of Blunt V-Notches”, International Journal of Fracture. Vol. 135, pp. 161-185, 2005.
[5] Berto, F. Lazzarin, P.  “Recent Developments in Brittle and Quasi-Brittle Failure Assessment of Engineering Materials by Means of Local Approaches”, Matererial Science and Engineering: R: Reports. Vol. 75, pp. 1-48, 2014.
[6] Lazzarin, P. Berto F.  Zappalorto, M.  “Rapid Calculations of Notch Stress Intensity Factors Based on Averaged Strain Energy Density from Coarse Meshes: Theoretical Bases and Applications”, International Journal of Fatigue. Vol. 32, pp.1559-1567, 2010.
[7] Salavati, H., Alizadeh, Y., Ayatollahi., M. R., “Fracture Assessment of Inclined Double Keyhole Notches in Isostatic Graphite” Physical Mesomechanics, Vol. 21, pp. 110-116, 2018.
[8] Berto, F. Campagnolo, A. Lazzarin, P. “Fatigue strength of severely nothched specimens made of Ti-6A-4V under multiaxial loading”, Fatigue & Fract of Engineering Matererial & Structures. Vol. 38, pp. 503-517, 2015.
[9] Berto, F.  Campagnolo, A. Welo, T.  “Fatigue and Fracture Assessment of Notched Components by Means of the Strain Energy Density”, Enineering Fracture Mechanics. Vol. 167, pp. 176-187, 2016.
[10] Berto, F. Campagnolo, A. Welo, T. “Local Strain Energy Density to Assess the Multiaxial Fatigue Strength of Titanium Alloys”, Fracture Structural Integrity. Vol. 10, pp. 69-79, 2016.
[11] Berto, F.  Campagnolo, A. Chebat, F. Cincera M. Santini, M.  “Fatigue Strength of Steel Rollers with Failure Occurring at the Weld Root Based on the Local Strain Energy Values: Modelling and Fatigue Assessment”, International  Journal of Fatigue. Vol. 82, pp. 643-657, 2016.
[12] Jha, D.K. Kant, T. Singh, R. K. “A Critical Review of Recent Research on Functionally Graded Plates”, Composite. Structures. Vol. 96, pp. 833-849, 2013.
[13] Aghazadeh Mohandesi, J. Shahosseini, M.H. “Transformation Characteristics of Functionally Graded Steels Produced by Electroslag Remelting”, Metall. Mater. Trans. A. Vol. 36, pp. 3471-3476, 2005.
[14] Aghazadeh Mohandesi, J. Shahossinie, M.H. Parastar Namin, R. “Tensile behavior of functionally graded steels produced by electroslag”, Metallurgical and Matererials Transactions. Vol. 37, pp. 2125, 2006.
[15] Nazari, A. Aghazadeh Mohandesi, J. Tavareh, S. “Modeling Tensile Strength of Austenitic Graded Steel Based on the Strain Gradient Plasticity Theory”, Computational Material Science. Vol. 50, pp. 1791-1794, 2011.
[17] Salavati, H. Berto, F. Alizadeh, Y. “The Flow Stress Assessment of Austenitic Martensitic Functionally Graded Steel under Hot Compression”, Engineering Solid Mechanics. Vol. 2, pp. 83-90, 2014.
[18] Abolghasemzadeh, M. Samareh Salavati Pour, H. Berto, F. Alizadeh, Y.  “Modeling of Flow Stress of Bainitic and Martensitic Functionally Graded Steels under Hot Compression”, Matererial Science and Engineering: A. Vol. 534, pp. 329-338, 2012.
[19] Salavati, H.  Alizadeh, Y.  Berto, F. “Application the Mechanism-Based Strain Gradient Plasticity Theory to Model the Hot Deformation Behavior of Functionally Graded Steels”, Structural Engineering and Mechanics. Vol. 51, pp. 627-641, 2014.
[20] Nazari, A. Aghazadeh Mohandesi, J.  “Impact Energy of Functionally Graded Steels with Crack Divider Configuration”, Journal of Materials Science & Technology. Vol. 25, pp. 847-852, 2009.
[21] Nazari, A. “Modeling Charpy Impact Energy of Functionally Graded Steel Based on the Strain Gradient Plasticity Theory and Modified Stress–Strain Curve Data”, Computational Matererial Science. Vol. 50, pp. 3350-3357, 2011.
[22] Nazari, A.  Aghazadeh Mohandesi, J. Riahi, S. “Modeling Impact Energy of Functionally Graded Steels in Crack Divider Configuration Using Modified Stress–Strain Curve Data”, International Journal of Damhage Mechanics. Vol. 21, pp. 27-50, 2012.
[23] Samareh Salavati Pour, H. Berto, F. Alizadeh, Y. “A New Analytical Expression for the Relationship between the Charpy Impact Energy and Notch Tip Position for Functionally Graded Steels”, Acta Metallurgica Sinica. (English Letters). Vol. 26, pp. 232-240, 2013.
[24] Barati, E. Alizadeh, Y. Aghazadeh Mohandesi, J. “J-Integral Evaluation of Austenitic–Martensitic Functionally Graded Steel in Plates Weakened by U-Notches”, Engineering Fracture Mechanics. Vol. 77, pp. 3341-3358, 2010.
[25] Salavati, H., Mohammadi, H., Ductile failure prediction of U-notched bainitic functionally graded steel specimens using the equivalent material concept combined with the averaged strain energy density, Physical Mesomechanics, vol 22, pp. 255-260, 2019.
[26] Tang, X. Zhang, H. Du, D. Qu, D.  Hu, C. Xie, R. “Fabrication of W–Cu Functionally Graded Material by Spark Plasma Sintering Method”, International Journal of  Refractory Metal and Hard Mater. Vol. 42, pp. 193-199, 2014.
[27] Liu, R.  Hao, T.  Wang, K. Zhang, T. Wang, XP. Liu, CS. “Microwave Sintering of W/Cu Functionally Graded Materials”, Journal of  Nuclear Materials. Vol. 431, pp. 196-201, 2012.
[28] Pintsuk, G. Brünings, SE. Döring, JE.  Linke, J. Smid, I.  Xue, L. “Development of W/Cu—Functionally Graded Materials”, Fusion. Eng. Des. Vol. 66, pp. 237-240, 2003.
[29] Zhou, Z-J. Du, J.  Song, S-X. Zhong, Z-H. Ge, C-C. “Microstructural Characterization of W/Cu Functionally Graded Materials Produced by a One-Step Resistance Sintering Method”, Journal of Alloys and Compounds. Vol. 428, pp. 146-150, 2007.
[30] Barati, E. Aghazadeh Mohandesi, J. Alizadeh, Y. “The Effect of Notch Depth on J-Integral and Critical Fracture Load in Plates Made of Functionally Graded Aluminum–Silicone Carbide Composite with U-Notches under Bending”, Matererial & Design, vol. 31, pp. 4686-4692, 2010.       
[31] Barati, E. Alizadeh, Y. and J.A. Mohandesi, “J-Integral Evaluation of Austenitic–Martensitic Functionally Graded Steel in Plates Weakened by U-Notches”, Engineering Fracture Mechanics, Vol. 77, pp. 3341-3358, 2010.
[32] Mehran, S. Rouhi, S. Ramzani, B. Barati, E.  “Fracture Analysis of Functionally Graded Materials with U‐and V‐Notches under Mode I Loading Using the Averaged Strain‐Energy Density Criterion”, Fatigue & Fracture of Engineering Materials & Structures. Vol. 35, pp. 614-627, 2012.
[33] Mohammadi, H. Salavati, H. Alizadeh, Y. Abdullah, A. Berto, F. “Fracture Investigation of U‐Notch Made of Tungsten–Copper Functionally Graded Materials by Means of Strain Energy Density”, Fatigue & Fracture of Engineering Matererials & Structures. Vol. 40, pp. 1984-1993, 2017.
[34] Mohammadi, H., Salavati, H., Mosaddeghi, MR.,  Yusefi, A., Berto, F., “Local strain energy density to predict mixed mode I+ II fracture in specimens made of functionally graded materials weakened by V-notches with end holes”, Theoretical and Applied Fracture Mechanics, Vol. 92, pp. 47-58, 2017.
[35] Mohammadi, H., Salavati, H., Alizadeh, Y., Berto, F., Panin, SV., “Fracture investigation of V-notch made of tungsten-copper functionally graded materials”, Physical Mesomechanics, Vol. 20, pp. 457-464, 2017.
[36] Mohammadi, H. Salavati, H. Alizadeh, Y. Berto, F. “Prevalent Mode II Fracture Assessment of Inclined U-Notched Specimens Made of Tungsten-Copper Functionally Graded Material”, Theoretical and Applied Fracture Mechanics, Vol. 89, pp. 90-99, 2017.
[37] Yosibash, Z.  Bussiba, A. Gilad, I. “Failure criteria for brittle elastic materials”, International Journal of  Fracture. Vol. 125, pp. 307-333, 2004.
[38] Zappalorto, M. Lazzarin, P.  “In-Plane and out-of-Plane Stress Field Solutions for V-Notches with End Holes”, International Journal of Fracture. Vol. 168, pp. 167-180, 2011.