مطالعه تایید و اعتبارسنجی در روش دینامیک سیالات محاسباتی برای نتایج مقاومت کشتی کانتینربر KCS بوسیله مدل توربولانسی انتقال تنش برشی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی هیدرودینامیک و جلوبرندگی، دانشگاه صنعتی مالک اشتر

2 کارشناسی ارشد، مهندسی معماری کشتی، دانشگاه صنعتی مالک اشتر

چکیده

یکی از موضوعات مهم در ارزیابی تحلیل عددی مقاومت کشتی بوسیله روش‌ دینامیک سیالات محاسباتی، بررسی عدم قطعیت آن است که شامل مطالعه تایید و اعتبارسنجی است. در این مطالعه شناور کانتینربر کی سی اس در شرایط آب آرام و در سرعت طراحی، معادل عدد فرود 26/0 مورد شبیه‌سازی عددی قرار گرفت. از روش حجم محدود برای گسسته‌سازی معادلات ناویراستوکس و مدل توربولانسی انتقال تنش برشی استفاده گردید. سطح آزاد بوسیله روش حجم سیال و اینرسی حرکات شناور بوسیله معادلات کوپل حرکت جسم صلب با جریان مدلسازی شد. مقادیر عدم قطعیت برای مطالعه تایید و اعتبارسنجی بررسی شد. مطالعه تایید بوسیله سه حل شبیه‌سازی با درجه متفاوت مش ، بررسی شد. پس از مطالعه تایید مقدار عدم قطعیت روش عددی کمتر از 76/5 درصد بود و در مطالعه اعتبارسنجی، با در نظر گرفتن عدم قطعیت تست مدل، مقدار عدم قطعیت84/5 درصد به‌دست آمد. نتایج حاکی از دقت مناسب روش استفاده شده و شبکه‌بندی بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Verification and Validation Study of Computational Fluid Dynamics for KCS Container Ship Resistance Result Using Shear Stress Transport Turbulence Model

نویسندگان [English]

  • saeed karami 1
  • Rouhollah H. Goudarzi 2
1 surface vessel centeruniversity of technology Malek ashtarferydonkenarmazandaraniran
2 surface vessel centeruniversity of technology Malek ashtarferydonkenarmazandaraniran
چکیده [English]

One of the important issues in evaluating the numerical analysis of ship resistance by the computational fluid dynamics method is to investigate its uncertainty, which includes verification and validation studies. In this study, the KCS container Ship in calm water was simulated numerically at the design speed, equivalent of Froude number 0.26. The finite volume method was used to discretize the Navier Stokes equations and the turbulence model of shear stress transfer. The free surface was modeled by the fluid volume and inertia of the ship motions using the coupled rigid-body coupling equations with fluid. Uncertainty values were assessed for verification and validation studies. The verification study was investigated by three simulation solutions with different mesh resolution . The numerical method uncertainty was less than 5.76% after the study and in the validation study, considering the uncertainty of the model test, the uncertainty was 5.84%. The results showed good accuracy of the method used and gridding.

کلیدواژه‌ها [English]

  • Verification and Validation
  • Ship Resistance
  • Computational fluid dynamics
  • Uncertainty
  • SST Model
[1]           American Institute of aeronautics and astronautics "Aeronautics and Astronautics, AIAA guide for the verification and validation of computational fluid dynamics simulations" 1998.
[2]           Roache A. j. "Verification of codes and calculations," vol. 36, no. 5, pp. 696-702, 1998.
[3]           Manual I. Q. "Uncertainty analysis in CFD uncertainty assessment methodology. The 22nd ITTC, Seoul and Shanghai," Report1999.
[4]           Procedures I. R. "ITTC–Recommended Procedures-Performance, Propulsion 1978 ITTC Performance Prediction Method," in International Towing Tank Conference, 1999, pp. 7.5-02.
[5]           Stern F. Wilson R. V. H. Coleman W. and E. Paterson G. "Verification and validation of CFD simulations," IOWA INST OF HYDRAULIC RESEARCH IOWA CITY1999.
[6]           H. Coleman and F. J. J. o. F. E. Stern, "Uncertainties and CFD code validation," vol. 119, no. 4, pp. 795-803, 1997.
[7]           Richardson L. S. A. Containing Papers of a Mathematical or Physical Character, "IX. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam," vol. 210, no. 459-470, pp. 307-357, 1911.
[8]           Procedures I. R. "Uncertainty analysis in CFD, uncertainty assessment methodology and Procedures. ITTC-Quality Manual," in In Proceedings of the International Towing Tank Conference, Venice, Italy, 8–14 September 2002., 2002, pp. 7.5-02.
[9]           Procedures I. R. "Uncertainty Analysis in CFD, Verification and Validation Methodology and Procedures. ITTC-Recommended Procedures and Guidelines, 7.5-03-01-01," in In Proceedings of the International Towing Tank Conference, Wuxi, China, 18 September 2017, 2017, pp. 7.5-02.
[10]         Eca L. s. Vaz G. and Hoekstra M. "Code verification, solution verification and validation in RANS solvers," in ASME 2010 29th International Conference on Ocean, Offshore and Arctic Engineering, 2010, pp. 597-605: American Society of Mechanical Engineers.
[11]         Larsson L. Stern F. and Visonneau M. Numerical ship hydrodynamics: an assessment of the Gothenburg 2010 workshop. Springer, 2013.
[12]         SHEN H.-c. YAO Z.-q. WU B.-s. ZHANG N. and  YANG M., "A new method on uncertainty analysis and assessment in ship CFD [J]," vol. 14, no. 10, pp. 1071-1083, 2010.
[13]         Simonsen C. D. Stern F. J. C. and fluids, "Verification and validation of RANS maneuvering simulation of Esso Osaka: effects of drift and rudder angle on forces and moments," vol. 32, no. 10, pp. 1325-1356, 2003.
[14]         Stern F. W. Coleman R.V., H. Paterson, E. "Comprehensive approach to verification and validation of CFD simulations—Part 1: Methodology and procedures.," J. Fluids Eng, pp. 793–802, 2001.
[15]         Zhang Z. R. Z. Wu F. "Research on uncertainty analysis of SUBOFF viscous flow field CFD simulation," in In Proceedings of the 2007 Ship Mechanics Conference, Beijing, China, August 2007, vol. 14, no. 10, pp. 1071-1083.
[16]         YANG R.-y. SHEN H.-c. and  YAO M. "Uncertain analysis of CFD simulation on the open-water performance of the propeller," vol. 5, pp. 472-480, 2010.
[17]         Z.-r. J. J. o. Zhang H. "Verification and validation for RANS simulation of KCS container ship without/with propeller," vol. 22, no. 1, pp. 889-896, 2010.
[18]         Tezdogan T. Demirel Y. K. Kellett P. Khorasanchi M. Incecik A. and Turan O. J. O. E. "Full-scale unsteady RANS CFD simulations of ship behaviour and performance in head seas due to slow steaming," vol. 97, pp. 186-206, 2015.
[19]         CD-adapco, NY, USA, "STAR CCM+ User Guide Version 12.04," 2017.
[20]         Moukalled F. Mangani L. and Darwish M. The finite volume method in computational fluid dynamics. Springer, 2016.
[21]         Versteeg H. K. and Malalasekera W. "An introduction to computational fluid dynamics: the finite volume method." Pearson education, 2007.
[22]         Guo H.-p. and Z.-j. J. A. Zou o. r. "System-based investigation on 4-DOF ship maneuvering with hydrodynamic derivatives determined by RANS simulation of captive model tests," vol. 68, pp. 11-25, 2017.
[23]         Shenoi R. R. Krishnankutty P. R. Selvam P. and Kulsreshtha A. "Prediction of maneuvering coefficients of a container ship by numerically simulating HPMM using RANSE based solver," in Proc. 3rd International Conference on Ship Manoeuvring in Shallow and Confined Water, Ghent, Belgium, 2013, pp. 220-229.
[24]         Yeo D. Yun K. and Kim Y. "Experimental Study on the Manoeuvrability of KVLCC2 in Shallow Water," in 4th MASHCON-International Conference on Ship Manoeuvring in Shallow and Confined Water with Special Focus on Ship Bottom Interaction, 2016, pp. 287-294.
[25]         R. P. ITTC and R. J. I. R. Procedures, "Guidelines: Practical Guidelines for Ship CFD Applications," vol. 7, pp. 02-03, 2011.
[26]         Oberkampf W. L. and F. G. J. Blottner A. j. "Issues in computational fluid dynamics code verification and validation," vol. 36, no. 5, pp. 687-695, 1998.
[27]         Wilson R. Shao J. and Stern J. F. E. "Discussion: Criticisms of the “Correction Factor” verification method," vol. 126, no. 4, pp. 704-706, 2004.
[28]         Richardson L. F. and J. A. J. P. T. o. t. R. S. o. L. S. Gaunt A. containing papers of a mathematical or physical character, "VIII. The deferred approach to the limit," vol. 226, no. 636-646, pp. 299-361, 1927.