بررسی اثرات جابجایی مرکز ثقل و تغییر زاویه عرضی کف شناور پروازی بر عملکرد دینامیکی شناور

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار/ دانشگاه صنعتی مالک اشتر، مجتمع دانشگاهی مکانیک، ایران

2 استادیار، مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر، ایران

3 مجتمع دانشگاهی مکانیک، دانشگاه صنعتی مالک اشتر، ایران

چکیده

هدف از این مقاله بررسی اثر تغییر زاویه عرضی کف شناور و جابجایی مرکز جرم آن در عملکرد دینامیکی شناور پروازی در امواج است. دامنه حرکات در شناورهای پروازی، معیاری از عملکرد شناور است که با چیدمان اجرام و همچنین انتخاب زاویه عرضی کف تغییر می‌کند و در این تحقیق اثرات آن بررسی شده است. برای بررسی نیروهای وارد بر شناور از تئوری نواری زارنیخ استفاده شده و بر اساس آن یک برنامه در محیط نرم‌افزار MATLAB نوشته شده است. در این برنامه با فرض برخورد امواج منظم از روبه‌رو به شناور و تقسیم بدنه به مقاطع عرضی مساوی، نیروی هیدرودینامیکی در هر کدام از این مقاطع محاسبه شده و حرکت دینامیکی شناور توسط معادلات شش درجه آزادی استخراج شده است. برای تعیین صحت نرم‌افزار، مقایسه‌ای بین نتایج مربوط به آزمون تجربی فریدسما با نتایج تحلیل حاضر انجام شده و سپس به بررسی اثرات پارامترهای زاویه عرضی کف شناور و مرکز ثقل پرداخته شده است. در این مقاله نشان داده شده است که با افزایش زاویه عرضی کف از 10 تا 40 درجه، دامنه حرکات پیچ از 16/0 به 18/0 رادیان و دامنه حرکات هیو از 31/0 به 37/0 فوت افزایش پیدا می‌کند. با نزدیک کردن مرکز جرم شناور به انتهای آن، از مرکز شناور تا 30% طول کل، دامنه حرکات پیچ از 15/0 به 22/0 رادیان و دامنه حرکات هیو از 32/0 به 46/0 فوت افزایش پیدا می‌کند و نزدیک شدن بیش از 30% به انتهای آن باعث عدم تعادل شناور خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effects of Shifting the Center of Gravity and Changing the Deadrise Angle on Dynamic Performance of High-speed planing hull

نویسندگان [English]

  • M Gandomkar 1
  • mohammad hossein Karimi 2
  • Gh Ahmadi Jeyed 3
1 Assistant Professor Faculty of Mechanics, Malek Ashtar University of Technology, Iran
2 Assistant Professor, Faculty of Mechanics, Malek Ashtar University of Technology, Iran
3 Faculty of Mechanical Engineering, Malek Ashtar University ot Technology, Iran
چکیده [English]

In this paper, the dynamic performance of the high-speed planing hull has been studied, and the effects of changing the deadrise angle and the shifting of center of gravity have been investigated in the waves. For this purpose, Zarnick’s strip theory has been used to extract the forces, and also using the MATLAB software program the simulation carried out. In this program, by assuming regular waves collide face to face and dividing the body into equal transverse sections, the hydrodynamic force at each of these sections is calculated, and the dynamic motion of the vessel is extracted by six-degree-of-freedom equations of motion. In order to validate the MATLAB program, first a comparison between the results of the Fridsma experimental test with the results of the present analysis is performed, and then the effects of the deadrise angle and the center of gravity position were investigated. It is shown that with increasing the deadrise angle from 10 to 40 degrees, the range of pitch and heave motions of the boat increase from 0.16 to 0.18 radians and from 0.31 to 0.37 feet respectively. Also, by bringing the center of gravity of the vessel closer to its end, from the center of vessel to 30% of the total length, the range of pitch and heave motions increase from 0.15 to 0.22 radians and from 0.32 to 0.46 feet, respectively. as a result, in more than 30%, it will be occurring the floating imbalance.

کلیدواژه‌ها [English]

  • High-Speed planing hull
  • Zarnick Strip Theory
  • Heave and Pitch motion
  • Deadrise Angle
  • Center of Gravity
[1] Von Karman, T., The impact on seaplane floats during Technical Notes, National Advisory Committee for 1929.

[2] Wagner, H., Uber Stoss-und Gleitvorginge an der Oberflich Fliissig-keiten, Zeitschrift Angewandte Mathematik und Meel Band 12, Heft 4 (August), 1932.

[3] Clement. E.P., Blount, D.L., Resistance Tests of Systematic Series of Planning Hull Forms, SNAME Transaction 71, pp: 491-579 1963.

[4] Fridsma, G., A Systematic Study of the Rough-Water Performance of Planning Boats, Report 1275, Davidson Laboratory, StevensInstitute of Technology, Hoboken, New Jersey, 1969.

[5] Fridsma, G., A Systematic Study of the Rough-Water Performance of Planning Boats (Irregular Waves - Part II, Report 11495. Davidson Laboratory, Stevens Institute of Technology, Hoboken, New Jersey, 1971.

[6] Katayama, T., Hinami, T., Ikeda.Y. Longitudinal Motion of a Super High-Speed Planing Craft in Regular Head Waves, Proc. og the 4th Osaka Colloquium on Seakeeping Performance of onio pp: 214-220, 2000.

[7] Garme, K., Improved Time Domain Simulation of Planing Hulls inWaves by Correction of the N Ear-Transom Lift, International Shipbuilding Progress, Vol. 52, No. 3, pp: 201-230, 2005.

[8] Lai. C Troesch, Hydrodynamics of Three-Dimensional Steady Planing", Journal of

Ship Research, Vol. 39, No.1, pp: 1-24, 1995.

[9] Zhao, R., Faltinsen, O.M., Haslum, H.A., A Simplified Non-Analysis of a High-Speed Planing Craft in Calm Water International Conference on Fast Sea Transportation (FASTO 1997.

[10] Battistin, D., Iafrati, A., Hydrodynamic loads during water entry of two-dimensional and axi-symmetric bodies, J. Fluid. Struct Vol. 17, pp: 643-664, 2003.

[11] Azcueta, R., Caponnetto, M., Soding, H., Motion simulations for planing boats in waves, Ship Technology Research, Vol. 4, pp:182-198, 2003b.

[12] Caponnetto, M., Practical CFD simulations for planing hulls, Proc. of Second International Euro Conference on High Performance Marine Vehicles, Hamburg, pp: 128-138, 2001.

[13] Kihara, H., A computing method for the flow analysis around a prismatic planing-hull, 7th international conference on high performance marine vehicles, Australia, pp: 262-272, 2006.

[14] Lewis, F.M., The inertia of the water surrounding a vibrating ship, SNAME Trans, Vol. 37, pp: 1-20, 1929.

[15] Sun, H., Faltinsen, O.M., The influence of gravity on the performance of planing vessels in calm water, J. Eng. Math, Vol.58, pp: 91-107, 2007.

[16] Cao, H., The Computation and research on resistance of planning craft based on the software FLUENT, PhD thesis. HarbinEngineering University, Harbin, 2008.

[17] Wang, Z., Niu, J., Qin, Z., Pang, Y., The computation resistance of planing craft based on the CFD techniques, 14th Conference on China Ocean Engineering, Hohhot, pp: 309-315, 2009.

[18] Shuo W., Yumin S., Xi Z., Jinglei Y., RANSE simulation of high-speed planning craft in regular waves, Journal of Marine Science and Application, Vol. 11, Issue. 4, pp: 447-452, December 2012

[19] Martin, M., Theoretical Determination of Porpoising Instability of High-Speed Planning Boats, Journal of Ship Research, Vol. 22, No. 1, pp: 32-53, 1978a.

[20] Zarnick, E., A Non-Linear Mathematical Model of Motions of a Planning Boat in Regular Waves, Technical Report. DTNSRDC78/032, David Taylor Naval Ship Reasearch and Development Center, 1978.

[21] Keuning, J.A., The Nonlinear Behavior of Fast Monohulls in Head Waves, PhD Thesis, Technische Universiteit Delft. 1994.

[22] Chiu, Forng-chen., Fujino, M., Nonlinear Prediction of Vertical Motions and Wave Loads of High-Speed Crafts in Head Sea, International Shipbuilding Progress, Vol. 36, No. 406, pp: 193

232, 1989.

[23] Hicks, J.D., Troesch, A.W., Jiang, C., Simulation and Nonlinear Dynamics Analysis of Planning Hulls, Journal of Offshore Mechanics and Arctic Engineering, Vol. 117, No. 1, pp: 38-45.1995.

[24] Akers, R.H., Dynamic Analysis of Planning Hulls in the Vertical Plane, Ship Motion Associates Portland, Maine, presented in meeting of the New England Section of The Society of Naval Architects and Marine Engineers, 1999.

[25] Blake R Investigation into the Vertical Motions of High-Speed Planing Craft in Calm Water and in Waves, PhD Dissertation, University of Southampton, 2000.

[26] Garme, K., Rosen, A., Time-Domain Simulations and Full-Scale Trials on Planing Craft in Waves, mternational Shipbuilding Progress, Vol. 50, No. 3, pp: 177-208, 2003.

[27] Lewis, S. G., Hudson, D.A., Turnock, S.R., Blake, R., Shenoi, R.A., Predicting motions of high speed RIBs: A comparison of non near strip theory with experiments, Proceedings of the 5th International Conference on High Performance Marine Vehicles (HIPER'06), Launceston, Australia, pp: 210-224, 2006.

[28] Van Deyzen, A., A Nonlinear Mathematical Model of Motions of a Planing Mono hull in Head Seas, 6th international conference on high performance marine vehicles (HIPER'08), 2008.

[29] Ghadimi, P., Dashtimanesh, A., Djeddi, S.R. and Maghrebi, Y.F., 2013. Development of a mathematical model for simultaneous heave, pitch and roll motions of planing vessel in regular waves. Int J Sci World, 1, pp.44-56.

[30] علیزاده, ابراهیم, هادی پور گودرزی, روح ا.., ساداتی ساروئی, سید کاظم. استخراج ضرایب هیدرودینامیکی مانور یک شناور پروازی تک‌بدنه با استفاده از شبیه‌سازی عددی مدل تست مهار شده. فصلنامه علمی دریا فنون, 1397; 5(2): 63-74.

]31 [دشتی‌منش, 1395، توسعه یک برنامه کامپیوتری جهت تحلیل حرکات هیو، پیچ و رول شناور پروازی در امواج منظم و نامنظم، مهندسی شناورهای تندرو15(49), pp.48-56.‎

[32] Niazmand Bilandi R, Dashtimanesh A, Tavakoli S. Development of a 2D+ T theory for performance prediction of double-stepped planing hulls in calm water. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 2019 Aug;233(3):886-904.

[33] Ghadimi P, Tavakoli S, Dashtimanesh A. An analytical procedure for time domain simulation of roll motion of the warped planing hulls. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment. 2016 Nov;230(4):600-15.

[34] Tavakoli S, Ghadimi P, Dashtimanesh A. A nonlinear mathematical model for coupled heave, pitch, and roll motions of a high-speed planing hull. Journal of Engineering Mathematics. 2017 Jun 1;104(1):157-94.

[35] Tavakoli S, Dashtimanesh A. Mathematical simulation of planar motion mechanism test for planing hulls by using 2D+ T theory. Ocean Engineering. 2018 Dec 1; 169:651-72.