مدلسازی و تشخیص خطای مغناطیس‌زدائی در موتور آهنربای دائم شار سوییچ شونده با استفاده از روش اجزا محدود گام‌به‌گام

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری دانشکده مهندسی برق، دانشگاه علم و صنعت ایران

2 استاد دانشکده مهندسی برق، دانشگاه علم و صنعت ایران

چکیده

در سال‌های اخیر موتورهای آهنربای دائم با توجه به خصوصیات عملکردی مناسب در صنایع مختلف بسیار مورداستفاده قرارگرفته‌اند. یکی از موتورهای PM جدیدا معرفی‌شده، موتور آهنربای دائم شار سوئیچ شونده است که ترکیبی از موتورهای آهنربای دائم معمولی و موتور سوئیچ رلوکتانس است. این موتور با وجود خواص عملکردی بسیار مناسب از قبیل چگالی توان و گشتاور بالا، قابلیت اطمینان بالا، راندمان بالاتر و غیره، مشابه با دیگر موتورهای آهنربای دائم در معرض خطای مغناطیس زدائی آهنرباها می باشد. از این رو در این مقاله با استفاده از روش اجزای محدود مدلسازی دقیق این پدیده در موتور آهنربای دائم شار سوئیچ شونده انجام شده و قدرت تحمل و مقاومت این موتور در برابر عواملی از قبیل عکس‌العمل آرمیچر، دما و خود مغناطیس‌زدائی مورد بررسی می گیرد. پس از انجام شبیه‌سازی‌ها مشخص شد که موتور FSPM در دماهای بالا به‌شدت در معرض خطر مغناطیس‌زدائی برگشت‌ناپذیر قرار دارد به‌طوری‌که گشتاور الکترومغناطیسی موتور در دمای 180درجه از 132 نیوتن-متر به 30 نیوتن-متر کاهش می‌یابد. از این رو بهبود در ساختار مغناطیسی موتور یا استفاده از آهنربای قوی تر در طراحی موتور FSPM مشهود می باشد. در نهایت با توجه به اینکه تاکنون تلاشی برای تشخیص خطای مغناطیس‌زدائی در موتورهای شار سوئیچ شونده صورت گرفته نشده است، با تحلیل طیف فرکانسی گشتاور الکترومغناطیسی موتور در حالت خطادار و مقایسه آن باحالت سالم، یک شاخص ساده و مناسب برای تشخیص خطای مغناطیس‌زدائی ارائه می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Demagnetization Modelling & Fault Diagnosing of the Flux Switching Permanent Magnet Motor Using Time Stepping Finite Element Method

نویسندگان [English]

  • Farshid Mahmouditabar 1
  • abolfazl vahedi 2
2 Iran University of Science and Technology
چکیده [English]

In recent years, permanent magnet motors are used in various industrial applications due to high-performance characteristics such as reliability, efficiency, and high power and torque density. One of the newly introduced PM motors which has attracted much attention is Flux Switching Permanent Magnet (FSPM) motor. FSPM motor is a combination of regular PM motor and switched reluctance motor. One of the major problems of PM motor is the phenomenon of demagnetization which is reduced the motor performance characteristics. In this paper a perceive model for demagnetization phenomenon is presented using Time Stepping Finite Element Method (TSFEM). The results will be shown that the FSPM motor severely vulnerable to demagnetization at high temperatures. The electromagnetic torque of the motor will be declined from 132N.m to 30N.m. Also, demagnetization tolerant of FSPM motor against armature reaction, temperature, and self-demagnetization is evaluated. In addition given that until today there are no attempts in demagnetization fault detection of FSPM motor, using the electromagnetic torque spectrum at the faulty and healthy conditions of the motor, an index for demagnetization fault diagnosing will be introduced.

کلیدواژه‌ها [English]

  • Demagnetization
  • Permanent magnet
  • Time Stepping FEM
  • Flux Switching Permanent Magnet
  • and Fault Detection
   [1]      H. Xiong, J. Zhang, M. W. Degner, C. Rong, F. Liang and W. Li, "Permanent-Magnet Demagnetization Design and Validation," in IEEE Transactions on Industry Applications, vol. 52, no. 4, pp. 2961-2970, July-Aug. 2016.
   [2]      F. Mahmouditabar, A. Vahedi, and M. . Bafghi, “Investigation of Direct & Quadrature Current Effects on Demagnetization of Flux Switching Permanent Magnet Motors,” IOP Conference Series: Materials Science and Engineering, vol. 433, no. 1, p 012092, Nov. 2018.
   [3]      F. Mahmouditabar, A. Vahedi, and P. Ojaghlu, “Investigation of demagnetization phenomenon in novel ring winding AFPM motor with modified algorithm,” J. Magn. Magn. Mater., vol. 491, p. 165539, Dec. 2019.
   [4]      Essam S. Hamdi, “Design of Small Electrical Machines” New York, USA John Wiley & Sons, 1994.
   [5]      G. Choi and T. Jahns, "Analysis and Design Recommendations to Mitigate Demagnetization Vulnerability in Surface PM Synchronous Machines," in IEEE Transactions on Industry Applications, vol. PP, no. 99, pp. 1-1, Nov. 2017.
   [6]      J. Faiz and E. Mazaheri-Tehrani, "Demagnetization Modeling and Fault Diagnosing Techniques in Permanent Magnet Machines Under Stationary and Nonstationary Conditions: An Overview," in IEEE Transactions on Industry Applications, vol. 53, no. 3, pp. 2772-2785, May-June 2017.
   [7]      L. Shao, W. Hua, Z. Q. Zhu, X. Zhu, M. Cheng and Z. Wu, “A novel flux-switching permanent magnet machine with overlapping windings,” IEEE Trans. Energy Convers., vol. 32, no. 1, pp. 172-183, Mar. 2017.
   [8]      Y. Du et al., "Comparison of Flux-Switching PM Motors With Different Winding Configurations Using Magnetic Gearing Principle," in IEEE Transactions on Magnetics, vol. 52, no. 5, pp. 1-8, May 2016.
   [9]      S. Li, Y. Li and B. Sarlioglu, "Partial Irreversible Demagnetization Assessment of Flux-Switching Permanent Magnet Machine Using Ferrite Permanent Magnet Material," in IEEE Transactions on Magnetics, vol. 51, no. 7, pp. 1-9, July 2015.
[10]      G. J. Li, P. Taras, Z. Q. Zhu, J. Ojeda and M. Gabsi, "Investigation of irreversible demagnetization in switched flux permanent magnet machines under short-circuit conditions," in IET Electric Power Applications, vol. 11, no. 4, pp. 595-602, Apr. 2017.
[11]      H. K. Kim and J. Hur, "Dynamic Characteristic Analysis of Irreversible Demagnetization in SPM- and IPM-Type BLDC Motors," in IEEE Transactions on Industry Applications, vol. 53, no. 2, pp. 982-990, March-April 2017.
[12]      F. Mahmouditabar, A. Vahedi, and P. Ojaghlu, “Investigation of demagnetization effect in an interior V-Shaped magnet synchronous motor at dynamic and static conditions,” Iranian Journal of Electrical and Electronic Engineering, vol. 14, no. 1, March. 2018.
[13]      A. Nobahari, Amin, Mehdi Aliahmadi, and Jawad Faiz. "Performance modifications and design aspects of rotating flux switching permanent magnet machines: a review." IET Electric Power Applications vol. 14, no. 1, pp. 1-15, Jan. 2020.‏
[14]      D. Egorov, I. Petrov, J. Pyrhönen, J. Link and R. Stern, "Linear recoil curve demagnetization models for ferrite magnets in rotating machinery," IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, pp. 2046-2052, Dec. 2017.
[15]      S. Sjökvist and S. Eriksson, "Experimental Verification of a Simulation Model for Partial Demagnetization of Permanent Magnets," in IEEE Transactions on Magnetics, vol. 50, no. 12, pp. 1-5, Dec. 2014
[16]      K.Yamzaki, A.Abe, “Loss investigation of inerior permanent magnet motors considering carrier harmonics and magnet eddy current,” IEEE Trans. on Industry Applications, vol.45, pp. 659–665, Feb. 2009.
[17]      P. Peng et al., "Effects of External Field Orientation on Permanent Magnet Demagnetization," in IEEE Transactions on Industry Applications, vol. 53, no. 4, pp. 3438-3446, July-Aug. 2017.
[18]      J.-C. Urresty, J.-R. Riba, L. Romeral, and A. Garcia, “A Simple 2-D Finite-Element Geometry for Analyzing Surface-Mounted Synchronous Machines With Skewed Rotor Magnets,” IEEE Trans. Magn., vol. 46, no. 11, pp. 3948–3954, Nov. 2010.
[19]      C. Ruschetti, C. Verucchi, G. Bossio, C. De Angelo, and G. García, “Rotor demagnetization effects on permanent magnet synchronous machines,” Energy Convers. Manag., vol. 74, pp. 1–8, Oct. 2013.
[20]      M. Zafarani, T. Goktas, and B. Akin, “A comprehensive analysis of magnet defect faults in permanent magnet synchronous motors,” in 2015 IEEE Applied Power Electronics Conference and Exposition (APEC), pp. 2779–2783, Dec. 2015.
[21]      J. A. Farooq, A. Djerdir, and A. Miraoui, “Analytical Modeling Approach to Detect Magnet Defects in Permanent-Magnet Brushless Motors,” IEEE Trans. Magn., vol. 44, no. 12, pp. 4599–4604, Dec. 2008.
[22]      J. De Bisschop, A. Abdallh, P. Sergeant, and L. Dupre, “Identification of Demagnetization Faults in Axial Flux Permanent Magnet Synchronous Machines Using an Inverse Problem Coupled With an Analytical Model,” IEEE Trans. Magn., vol. 50, no. 11, pp. 1–4, Nov. 2014.
[23]      T. Raminosoa, J. A. Farooq, A. Djerdir, and A. Miraoui, “Reluctance network modelling of surface permanent magnet motor considering iron nonlinearities,” Energy Convers. Manag., vol. 50, no. 5, pp. 1356–1361, May. 2009.
[24]      S. Saied, S. Hemmati, K. Abbaszadeh, and A. Tenconi, “Inverse transform method for magnet defect diagnosis in permanent magnet machines,” IET Electr. Power Appl., vol. 8, no. 3, pp. 98–107, Mar. 2014.
[25]      D. Torregrossa, A. Khoobroo, and B. Fahimi, “Prediction of Acoustic Noise and Torque Pulsation in PM Synchronous Machines With Static Eccentricity and Partial Demagnetization Using Field Reconstruction Method,” IEEE Trans. Ind. Electron., vol. 59, no. 2, pp. 934–944, Feb. 2012.
[26]      Gyu-Hong Kang, Jin Hur, Hyuk Nam, Jung-Pyo Hong and Gyu-Tak Kim, "Analysis of irreversible magnet demagnetization in line-start motors based on the finite-element method," in IEEE Transactions on Magnetics, vol. 39, no. 3, pp. 1488-1491, May. 2003.
[27]      S. Ruoho, E. Dlala and A. Arkkio, "Comparison of Demagnetization Models for Finite-Element Analysis of Permanent-Magnet Synchronous Machines," in IEEE Transactions on Magnetics, vol. 43, no. 11, pp. 3964-3968, Nov. 2007