[1] Speagle, R. C., Dawson, D. M., “Adaptive tracking control of permanent magnet stepper motor driving a mechanical load”, IEEE Conference, 1993, Southeastcom. DOI: 10.11091SECON. 1993.465790
[2] Harb, A. M., Zaher, A. A., “Nonlinear control of permanent magnet stepper motors”, Communications in Nonlinear Science and Numerical Simulation”, Vol. 9, No. 4, pp. 443-458 (2004).
[3] Nollet, F., Floquet, T., Perruquetti, W., “Observer based second order sliding mode control laws for stepper motors”, Control Engineering Practice, Vol. 16, No. 4, pp. 429-443 (2008).
[4] Zribi, M., Ramirez, H. S., Ngai, A., “Static and dynamic sliding mode control schemes for a permanent magnet stepper motor”, International Journal of Control, Vol. 74, No. 2, pp.103-117 (2001).
[5] Ge, S. S., Hang, C. C., Zhang, T., “A direct method for robust adaptive nonlinear control with guaranteed transient performance”, Systems and Control Letters, Vol. 37, No. 5, pp.275-284 (1999).
[6] Ploh, A., Annaswmy, A. M. and Skantze, F., “Adaptation in the presence of a general nonlinear parameterization: An error model approach”, IEEE Transaction on Automatic Control, Vol. 44, No. 9, pp. 1634-1652 (1999).
[7] Nealis, J. M., Smith, R. C., “Nonlinear adaptive parameter estimation algorithms for hysteresis models of magnetostrictive actuators”, Proceeding of the SPIE, Smart Structure and Materials, pp. 25-36 (2002).
[8] Marino, R., Peresada, S., Tomei, P., “Nonlinear adaptive control of permanent magnet step motors”, Automatica, Vol. 31, No. 11, pp. 1595-1604 (1995).
[9] Zribi, M., Chiasson, J., “Position control of a pm stepper motor by exact linearization”, IEEE Trans on Automatic Control, Vol. 36, No. 5, pp. 620-625 (1991).
[10] Minkov, M. D., Rodgerson, J., Harly, R. G., “Adaptive neural speed controller of a dc motor”, Electric Power Systems Research, Vol. 47, No. 2, pp. 123-132 (1998).
[11] Nouri, K. , Dhaouadi, R., Braiek, N. B., “Adaptive control of a nonlinear dc motor drive using recurrent neural networks”, Applied Soft Computing, Vol. 8, No. 1, pp. 371-382 (2007).
[12] Fallahi, M., Azadi, S., “Adaptive control of a dc motor using neural networks sliding mode control”, Proceedings of the International Multi conference of Engineers and Computer Scientists, 2009.
[13] Feng, G., “Position control of a pm stepper motor using neural networks”, Proceeding of the IEEE Conference on Decision and Control, Vol. 2, pp. 1766-1769 (2000).
[14] Gomi, H., Kawato, M., “Neural Network control for a closed loop system using feedback error learning”, Neural Networks, Vol. 6, No. 7, pp. 933-946 (1993).
[15] King, P. J. and Mamdani, E. H., “The application of fuzzy control systems to industrial process”, Automatica, Vol. 13, No. 3, pp. 235-242 (1977).
[16] Takagi, T. and Sugeno, M., “Fuzzy identification of systems and its applications to modeling and control”, IEEE Trans. on Systems, Man and Cybernetics, Vol. 15, No. 1, pp. 116-132 (1985).
[17] Essounbouli, N. and Hamzaoui, A., “Direct and indirect robust adaptive fuzzy controllers for a class of nonlinear systems”, International Journal of Control, Automation and Systems, Vol. 4, No. 2, pp. 146-154 (2006).
[18] Song, L. P., Zhang, R., Luo, Y., “Direct Torque controlling of permanent magnet synchronous motor based on the adaptive fuzzy controller”, Fuzzy Information and Engineering Volume 2 Advances in Soft Computing, Vol. 62, pp. 393-401 (2009).
[19] Wang. L. X. and Mendel. J. M., “Fuzzy basis functions universal approximation and orthogonal least-squares learning”, IEEE Transaction on Neural Network, Vol. 3, No. 5, pp. 807-814, (1992).
[20] Castro, J. L., “Fuzzy logic controllers are universal approximators”. IEEE Transaction on Systems, Man and Cybernetics, Vol. 25, No. 4, pp. 629-635 (1995).
[21] Hornik, K., “Multilayer feedforward networks are universal approximators”, Neural Networks, Vol. 2, No. 5, pp. 359-366 (1989).
[22] Chang, W., et. al, “design of robust fuzzy model-based controller with sliding mode control for SISO non-linear systems”, Fuzzy Sets and Systems, Vol. 125, No. 1, pp. 1-22 (2002).
[23] Zhang, T., Ge, S. S., and Hang, C. C., “Direct adaptive control of non-affine nonlinear systems using multilayer neural networks”, Proceeding of the American Control Conference. Philadelphia, pp. 515-519 (1998).
[24] Phan, P. A., Gale, T. J.,“ Direct adaptive fuzzy control with a self-structuring algorithm”, Fuzzy Sets and Systems, Vol. 159, PP. 871-899, (2008).
[25] Chang, W. D., Hwang, R. C., Hsieh, J G., “ A self-tuning PID control for a class of nonlinear systems based on the lyapunov approach”, Journal of Process Control, Vol. 12, No. 2, pp. 233-242 (2002).
[26] Moradi, M., Kazemi, M. H., Ershadi, E., “Direct adaptive fuzzy control with membership function tuning”, Asian Journal of Control, Vol. 15, No. 3, pp.1-10 (2013).