مطالعه عددی و تاثیر متقابل هیدرودینامیکی پروانه - سکان در شناورهای تجاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد معماری کشتی دانشگاه علوم دریایی امام خمینی (ره) نوشهر

2 استادیار دانشکده مهندسی، گروه مهندسی مکانیک، مجتمع آموزش عالی گناباد

3 استاد دانشکده مهندسی کشتی دانشگاه صنعتی امیرکبیر

چکیده

بررسی اثر متقابل مجموعه پروانه-سکان، در طراحی سیستم رانش و همچنین طراحی سیستم هدایت شناورها، بسیار مهم می باشد. محاسبه دقیق ویک بدنه و میانگین سرعت جریان ورودی پروانه، باعث می شود تا طراحی و انتخاب پارامترهای هندسی پروانه و سکان به درستی انجام پذیرد و نیرو های محوری و جانبی مورد نظر طراحان، به خوبی تامین شود. همچنین محاسبه دقیق اثر جریان خروجی پروانه بر روی سکان، باعث می شود تا طراحی مجموعه پروانه-سکان و محاسبه فاصله آنها به درستی انجام پذیرد و نیروی لیفت و درگ مورد نظر طراحان در حین زاویه گرفتن تیغه سکان و مانور شناور، به درستی تامین شود. نتایج حاصل از محاسبه ضرایب بی بعد، خطوط جریان و خطوط توزیع فشار بر روی پروانه-سکان، و همچنین محاسبه میدان ویک نامی ارائه ‌شده است و در ضرایب پیشروی مختلف باهم مقایسه گردیده است. همچنین ضرایب هیدرودینامیکی سکان در شرایط مختلف و در زوایای صفر، 10، 20 و 30 درجه، بررسی و مقایسه شده اند. در همه حالات بازده برعکس ضریب تراست و گشتاور با افزایش ضریب پیشروی افزایش می یابد. بطوریکه در ضرایب پیشروی بالا حضور سکان 3درصد راندمان را افزایش می دهد و با افزایش زاویه سکان این اثر افزایش دو برابر(6درصد) می‌شود. وجود سکان در ضرایب پیشروی پایین تاثیر افزایشی حدود 5 درصد و 9درصد بر روی ضریب گشتاور و ضریب تراست به ترتیب دارد. افزایش زاویه سکان در ضرایب پیشروی بالا باعث می شود 17 درصد و 9 درصد ضریب گشتاور و ضریب تراست به ترتیب افزایش یابد. در حالت سکان-پروانه تا زاویه 10 درجه و حالت بدون پروانه تا زاویه 20 درجه، افزایش ضریب پیشروی تاثیر محسوسی روی ضریب لیفت و درگ ندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Analysis and Hydrodynamic Interactions for Propeller-Rudder System in Commercial Bulk Carriers

نویسندگان [English]

  • Ali eskafi noghano 1
  • Seyed Morteza Javadpour 2
  • Hassan Ghasemi 3
1 Imam Khomeini University of Maritime Sciences
2 University of Gonabad
3 .
چکیده [English]

Interaction of the propeller-rudder system is important in design of propulsion system as well as maneuvering for all types of ships. This paper is presented to analyze the propeller-rudder system using ANSYS-Fluent commercial software. The results of calculating the hydrodynamic dimensionless coefficients, streamlines and pressure distribution on the propeller-rudder are presented and compared in different advance coefficients. Also, hydrodynamic coefficients of the propeller-rudder have been studied and compared at various rudder angles of 0, 10, 20 and 30 degrees. In all cases, the efficiency increases with increasing the advance coefficient, however the torque and thrust coefficients decreases. So, in high advance coefficient, the existence of the rudder the efficiency increases by 3% and with increasing the angle of the rudder, this effect is double (6%). The existence of the rudder in the low advance coefficients, torque and thrust coefficients increases by 5% and 9% respectively. In high advance coefficients, the angle of the rudder is causes the torque coefficient and trusted coefficient to increase 17% and 9% respectively. In the existence of the rudder-propeller to angle of 10 [deg.] and without propeller to an angle of 20, the increasing of advance coefficient does not have significant effect on the lift and drag coefficients.

کلیدواژه‌ها [English]

  • Propeller
  • Rudder
  • CFD
  • Hydrodynamic Coefficients
  • Commercial Carrier
  1. Carlton, J.S. Marine Propellers and Propulsion. 3nd Edition, Butterworth-Heinemann, Oxford, UK, 2010.
  2. Rankine, W.J.M. On the mechanical principles of the action of propellers. Transactions of the Institution of Naval Architects, Vol. 6, 1865, pp. 13–39.

3. Uto, S. Computation of incompressible viscous flow around a marine propeller. Journal of Society of Naval Architects of Japan, Vol. 172, 1992, pp. 213–224.

4. Stanier, M.J. Design and evaluation of new propeller blade section, 2nd International STG Symposium on Proposers and Cavitation, Hamburg, Germany, 1992.

5. Martinez-Calle, Julian. An Open Water Numerical Model for Marine Propeller: a Comparison with Experimental Data, Proceedings of ASME FEDSM’02 2002 joint US-European Fluids Engineering Summer Conference July 91-92, 3113, Montreal, Canada, 2002.

6.Yoshihisa Takekoshi, Simulation of Steady and Unsteady Cavitation on Marine Propeller Using a RANS CFD Code, Fifth International Symposium on Cavitation (CAV3003) Osaka, Japan, November 9-4, 3003.

7. Shin Hyung Rhee, Evangelos Koutsavdis, Two-Dimensional Simulation of Unsteady Marine propulsor blade flow Using Dynamic Meshing Techniques, Fluent Inc, 10 Cavendish Ct, lebonan, NH 03766, USA, 2004.

8. Turnock, S.R. Pashias, C. and Rogers, E. Flow feature identification for capture of propeller tip vortex evolution. Proceedings of the 26th Symposium on Naval Hydrodynamics. Rome, Italy, INSEAN Italian Ship Model Basin /Office of Naval Research, 2006, pp. 223–240.

9. Pashias, C. Propeller tip vortex capture using adaptive grid refinement with vortex identification. PhD thesis, University of Southampton, 2005.

10. Phillips, A.B. Simulations of a self-propelled autonomous underwater vehicle.Ph.D. Thesis, University of Southampton, 2010.

11. Molland, A. Turnock, S.R. Marine Rudders and Control Surfaces. First Edition, Butterworth-Heinemann, Oxford, UK, 2007.

12. Shiu-Wu Chau, Jen-Shiang Kouh, Investigation of hydrodynamic performance of high-speed craft rudders via turbulent flow computationals, PartI. Journal of Marine Science and Technology, Vol. 13, No. 1, pp. 61-72.2005.

13. Daskovsky M. The hydrofoil in surface proximity theory and experiment. Ocean Eng, Vol. 27, N, 2000.

14. Bourgoyne DA, Flow over a hydrofoil with trailing edge vortex shedding at high Reynolds number. PhD Thesis, Mechanical Engineering University of Michigan, Michigan, 2003.

15. Hakan Ozdemira Y, Bayraktara S .Yılmaza T, Flowfield analysis of a rudder by using computational fluid dynamics. 5th International Advanced Technologies Symposium (IATS’09), May 13-15, Karabuk, Turkey, 2009.

16. Young Y.L, Brizzolara S, Numerical and Physical Investigation of a Surface-Piercing Hydrofoil. Third International Symposium on Marine Propulsors smp’13, Launceston, Tasmania, Australia. 2013.

17. Makwana P.B, Makadiya J.J. Numerical Simulation of Flow Over Airfoil and Different Techaniques to Reduce Flow Seperation Along with Basic CFD Model. International Journal of Engineering Research & Technology Vol. 3 Issue 4, 2014.

18. Ueno M, Tsukada Y, Kitagawa Y, Rudder effectiveness correction for scale model ship testing. National Maritime Research Institute, 6-38-1 Shinkawa, Mitaka, Tokyo 181-0004 Japan, 2012

19. Nguyen T.V, Ikeda Y, A Study on High Lift Rudders with Wedge Tail and End Plates, Department of Marine System Engineering. Graduate School of Engineering, Osaka Prefecture University Sakai City, Osaka Prefecture, Japan, 2014.

20. Reichel M, Influence of rudder location on propulsive characteristics of a single screw container ship. Ship Design and Research Centre (CTO S.A.), Gdańsk, Poland, First International Symposium on Marine Propulsors smp’09, Trondheim, Norway, 2009.

21. Krasilnikov V, Ponkratov D, Crepier P, A Numerical Study on the Characteristics of the System Propeller and Rudder at Low Speed Operation, Second International Symposium on Marine Propulsors, smp’11, Hamburg, Germany, June 2011.

22. Mascio A.D, Dubbioso G, Muscari R, Mario Felli. CFD Analysis of Propeller-Rudder Interaction, Proceedings of the Twenty-fifth International Ocean and Polar Engineering Conference, Kona, Big Island, Hawaii, USA, June 21-26, 2015,pp 946-950, 2015.

23. Yu Sun, Yumin Su, Xiaoxiang Wang and Haizhou Hu. Experimental and numerical analyses of the hydrodynamic performance of propeller boss cap fins in a propeller-rudder system, Engineering Applications of Computational Fluid Mechanics, vol. 10, No. 1, 145–159, 2016.

24.https://www.sva-potsdam.de/en/towing-tank.

25. Lloyd's Register of shipping (RL) for the classification of ship, Transactions Part B, Ch7, Sec1, (Rudders), Edition 2017.

26. Fox R.W, McDonald A.T, Pritchard P.J, Introduction to Fluid Mechanics. Sixth Edition, John Wiley-Sons, INC, USA, 2004.