تحلیل عددی جریان حول یک پروانه گام ثابت و PBCF به روش CFD

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد، مهندسی هیدرودینامیک و جلوبرندگی، دانشگاه صنعتی مالک اشتر

2 کارشناسی ارشد، مهندسی دریا، دانشگاه صنعتی مالک اشتر

چکیده

زمانی که یک پروانه در حال حرکت در آب است، یک جریان ورتکسی قوی در نزدیکی هاب پروانه تولید می‌شود که منجر به کاهش عملکرد پروانه می‌گردد. لذا با اضافه نمودن فین‌های چرخان به پشت پروانه می‌توان جریان را به پشت سینه کپ منحرف و شدت ورتکس هاب را کاهش ‌داد. در این پژوهش، تیغه‌های توپی پروانه به‌صورت پارامتری طراحی و به یک پروانه سری بی اضافه گردید‌. نقاط عملکرد طراحی و نقاط خارج از طراحی برای پروانه سری بی بررسی و نقطه شروع کاویتاسیون با استفاده از روش عددی تخمین زده شد. در ادامه اثرات تغییرات هندسی تیغه‌های توپی پروانه موردبحث قرار گرفت و یک مدل هندسی ارائه‌شد. یک پروانه مرجع گام متغیر برای اعتبارسنجی روش عددی مورد استفاده قرار گرفت. از معادلات متوسط‌گیری رینولدزکوپل‌شده با مدل انتقال جرم کاویتاسیون به‌منظور شبیه‌سازی میدان جریان استفاده گردید. تغییرات هندسی تیغه‌های توپی پروانه با استفاده از روش پیشنهادی‌، بهبود بازدهی پروانه در ضرایب پیشروی بالا را نشان می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Numerical Analysis Flow around a Fixed pitch Marine Propeller and PBCF by CFD

نویسندگان [English]

  • saeed karami 1
  • Ghader Mirzaei 2
  • Ali Maleki 2
1 surface vessel centeruniversity of technology Malek ashtarferydonkenarmazandaraniran
2 surface vessel center university of technology Malek ashtar ferydonkenar mazandaraniran
چکیده [English]

When a propeller moves in the water, a strong Vortex flow generates around the Propeller Hub that reduces the performance of the propeller. Therefore, by adding rotating Fins to the back of the propeller, the flow deviates to the back of the bow cap and reduces the intensity of the vortex. In this research, Boss Cap Fins designed parametrically and added to the B-Series Propeller. The design performance points and non-design points for B-series propeller investigated and the cavitation starting point estimated. In the following, the effect of geometric changes of PBCF discussed and a geometric model proposed. In order to validate the numerical method, a Controllable Pitch Propeller has been used. The coupled Reynolds-averaged equations with cavitation mass transfer model were used to simulate flow field. The geometric changes of the Boss Cap Fins using the proposed method depict the improved efficiency in the high advanced coefficients.

کلیدواژه‌ها [English]

  • Marine Propeller
  • Propeller Wake
  • Cavitation and Non Cavitation
  • PBCF(Propeller Boss Fin Cap)
  • Energy Saving Device
  • Fin
.[1]       S.-S. Lim, T.-W. Kim, D.-M. Lee, C.-G. Kang, and S.-Y. Kim, "Parametric study of propeller boss cap fins for container ships," International Journal of Naval Architecture and Ocean Engineering, vol. 6, no. 2, pp. 187-205, 2014.
[2]        K. Ouchi et al., "A Research and Development of PBCF (Propeller Boss Cap Fins)," Journal of the Society of Naval Architects of Japan, vol. 1988, no. 163, pp. 66-78, 1988.
[3]        K. Ouchi, M. Tamashima, and T. Kawasaki, "A RESEARCH AND DEVELOPMENT OF PBCF (PROPELLER BOSS CAP FINS), 2ND REPORT: STUDY ON PROPELLER SLIPSTREAM AND ACTUAL SHIP PERFORMANCE," Journal of the Society of Naval Architects of Japan, vol. 165, 1989.
[4]        K. Ouchi and M. Tamashima, "Research and development of PBCF (propeller boss cap fin), new and practical device to enhance propeller efficiency," in International Symposium on Practical Design of Ships and Mobile Units (PRADS), 4th, 1989.
[5]        T. Kawamura, K. Ouchi, and T. Nojiri, "Model and full scale CFD analysis of propeller boss cap fins (PBCF)," Journal of marine science and technology, vol. 17, no. 4, pp. 469-480, 2012.
[6]        Y. Sun, Y. Su, X. Wang, and H. Hu, "Experimental and numerical analyses of the hydrodynamic performance of propeller boss cap fins in a propeller-rudder system," Engineering Applications of Computational Fluid Mechanics, vol. 10, no. 1, pp. 145-159, 2016.
[7]        S. Gaggero, "Design of PBCF energy saving devices using optimization strategies: A step towards a complete viscous design approach," OCEAN ENGINEERING, vol. 159, pp. 517-538, 2018.
[8]        J. Carlton, Marine propellers and propulsion. Butterworth-Heinemann, 2012.
[9]        K. W. Shin and P. Andersen, "Cavitation simulation on marine propellers," 2010.
[10]      B. Ji, X. Luo, X. Peng, Y. Wu, and H. Xu, "Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake," International Journal of Multiphase Flow, vol. 43, pp. 13-21, 2012.
[11]      B. Ji, X.-w. Luo, Y.-l. Wu, S.-h. Liu, H.-y. Xu, and A. Oshima, "Numerical investigation of unsteady cavitating turbulent flow around a full scale marine propeller," Journal of Hydrodynamics, Ser. B, vol. 22, no. 5, pp. 747-752, 2010.
[12]      D. Liu, "The numerical simulation of propeller sheet cavitation with a new cavitation model," Procedia Engineering, vol. 126, pp. 310-314, 2015.
[13]      B. Ji, X. Luo, R. E. Arndt, and Y. Wu, "Numerical simulation of three dimensional cavitation shedding dynamics with special emphasis on cavitation–vortex interaction," Ocean Engineering, vol. 87, pp. 64-77, 2014.
[14]      S. H. Rhee, T. Kawamura, and H. Li, "Propeller cavitation study using an unstructured grid based Navier-Stoker solver," Journal of Fluids Engineering, vol. 127, no. 5, pp. 986-994, 2005.
[15]      R. E. Bensow and G. Bark, "Implicit LES predictions of the cavitating flow on a propeller," Journal of Fluids Engineering, vol. 132, no. 4, p. 041302, 2010.
[16]      S. Gaggero, G. Tani, M. Viviani, and F. Conti, "A study on the numerical prediction of propellers cavitating tip vortex," Ocean engineering, vol. 92, pp. 137-161, 2014.
[17]      R. Arazgaldi, A. HAJILOUEI, and B. Farhanieh, "Experimental and numerical investigation of marine propeller cavitation," 2009.
[18]      N. X. Lu, U. Svennberg, G. Bark, and R. Bensow, "Numerical simulations of the cavitating flow on a marine propeller," in 8th International Symposium on Cavitation, 2012.
[19]      E. Guilmineau, G. Deng, A. Leroyer, P. Queutey, M. Visonneau, and J. Wackers, "Numerical simulations of the cavitating and non-cavitating flow around the postdam propeller test case," in Fourth International Symposium on Marine Propulsors smp, 2015, vol. 15.
[20]      V. Patil, H. Purushothama, A. Manjunatha, and V. K. Mishra, "Performance Evaluation of Marine Propeller using Numerical Simulation," Indian Journal of Science and Technology, vol. 9, no. 45, 2016.
[21]      M. Morgut and E. Nobile, "Numerical predictions of the cavitating and non-cavitating flow around the model scale propeller pptc," in Proceedings of the Workshop on Cavitation and Propeller Performance, the 2nd International Symposium on Marine Propulsors (SMP’11), 2011.
[22]      H. Ghassemi, A. Mardan, and A. J. P. M. R. Ardeshir, "Numerical analysis of hub effect on hydrodynamic performance of propellers with inclusion of PBCF to equalize the induced velocity," vol. 19, no. 2, pp. 17-24, 2012.
[23]      H. GHASSEMI, A. MARDAN, and E. YARI, "NUMERICAL ANALYSIS OF HUB EFFECT ON MARINE VEHICLE PROPELLER PERFORMANCE AND USING PBCF TO EQUALIZE ITS INDUCED VELOCITY DOWNSTREAM," 2013.
[24]      H. K. Versteeg and W. Malalasekera, An introduction to computational fluid dynamics: the finite volume method. Pearson Education, 2007.
[25]      I. STAR-CCM+, STAR-CCM+ Documentation. 2017.
[26]      S.-V. Potsdam, " Barkmann, U.,Potsdam Propeller Test Case (PPTC) - Geometry PPTC of the Model Propeller VP1304, ," April 2011.
[27]      K. Fujiyama and D. Hitomi, "Performance and cavitation evaluation of marine propeller using numerical simulations," in Second International Symposium on Marine Propulsors, SMP, 2011, vol. 11.
[28]      V. Krasilnikov, "CFD modeling of hydroacoustic performance of marine propellers: Predicting propeller cavitation," in Proceedings of the 22nd Numerical Towing Tank Symposium, Tomar, Portugal, vol. 29.
[29]      T. Sipilä and T. Siikonen, "CFD and CHA simulation of underwater noise induced by a marine propeller in two-phase flows," 2017.
[30]      L. F. Richardson, "The approximate arithmetical solution by differece of physical probelems involving differential equations, with an application to the stresses in a masonry dam," Trans. R. Soc, vol. 210, pp. 459-490, 1911.
[31]      L. F. Richardson and J. A. Gant, "The deferred approach to the limit," Trans. R. Soc, vol. 226, pp. 636-646, 1927.
[32]      o. E. Omweri, J. O. Amisi, and S. H. Long, "Performance predication of Marine Propeller using Steady and Unsteady flow approaches," in Proceedings of sustainable Research and Innovation Conference, 2017, pp. 126-133.
[33]      H.-J. Heinke, "Potsdam propeller test case (PPTC), cavitation tests with the model propeller," Tech. Rep. VP1304, SVA (Potsdam Model Basin)2011.
[34]      M. M. Bernitsas, D. Ray, and P. Kinley, "KT, KQ and efficiency curves for the Wageningen B-series propellers," 1981.
[35]      M. Observed and O. Pvan, "Further computer-analyzed data of the Wageningen B-screw series," Int Shipbuild Progr, pp. 251-62, 1975.
[36]      W. Van Lammeren, J. Van Manen, and M. Oosterveld, "The Wageningen B-screw series," 1969.
[37]      M. Eckhardt and W. Morgan, A propeller design method. SNAME, 1955.
[38]      R. Shamsi and H. Ghassemi, "Numerical Analysis of Marine Propulsor Using Coupled BEMT/RANS Method," (in eng), Journal Of Marine Engineering, Research Paper vol. 13, no. 25, pp. 1-14, 2017.
[39]      S. Ekinci, "A practical approach for design of marine propellers with systematic propeller series," Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, vol. 62, no. 2, pp. 123-129, 2011.
[40]      M. Gaafary, H. El-Kilani, and M. Moustafa, "Optimum design of B-series marine propellers," Alexandria Engineering Journal, vol. 50, no. 1, pp. 13-18, 2011.
[41]      J. A. A Szantyr, "Scale effects in Cavitation experiments with marine propeller models," Polish Maritime Research, pp. 3-10, 2006.
[42]      R. E. A. Arndt, "Cavitation in Vortical Flows," Annual Review of Fluid Mechanics, pp. 143-175, 2002.
[43]      G. Kuiper, "Cavitation research and ship propeller design," Applied scientific research, pp. 33–50, 1998.
[44]      Y.-C. B. Wang, C.E., "Shock Waves and Noise in the Collapse of a Cloud of Cavitation  Bubbles," in 20th  International  Symposium  on  Shock  Waves, Pasadena, California, USA., 1995, pp. 1213–1218.
[45]      H. J. Luget, "The dilemma of defining a vortex," Springer, pp. 309-321, 1979.
[46]      M. S. Chong, A. E. Perry, and B. J. Cantwell, "A general classification of three- dimensional flow," phys.Fluids, pp. 765-777, 1990.