تحلیل عملکرد و بررسی نیروهای وارد بر مبدل انرژی امواج دریا بر مبنای ستون نوسانی آب تحت اثر موج منظم به روش عددی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشگاه صنعتی نوشیروانی بابل، دانشکدۀ مهندسی مکانیک

2 استادیار دانشگاه صنعتی نوشیروانی بابل-دانشکدۀ مهندسی مکانیک

چکیده

در این پژوهش یک مبدل انرژی امواج بر پایه‌ی ستون نوسانی آب با استفاده از روش عددی شبیه‌سازی شده است. معادلات متوسط‌گیری شده‌ی ناویر-استوکس با بکارگیری روش عددی مبتنی بر دینامیک سیالات محاسباتی و استفاده از کد متن‌باز اوپن‌فوم حل شده است. حلگر مناسب برای در نظر گرفتن اثرات سطح آزاد و همچنین اثرات آشفتگی جریان بر حل مسئله انتخاب شده است. صحت‌سنجی حل عددی بر مبنای نتایج آزمایشگاهی معتبر و برای مسئله‌ی دوبُعدی انجام گرفته است. مواردی نظیر تغییرات سطح آزاد آب داخل مبدل، مقدار فشار و همچنین بازده‌ی مبدل ارائه شده و اثرات شرایط امواج منتشر شده در تانک عددی بر عملکرد هیدرودینامیکی این مبدل مورد ارزیابی قرار گرفت. همچنین نیروهای وارد بر مبدل در شرایط مختلف ارائه شده و می‌تواند در طراحی مبدل بعنوان یک سازه‌ی ساحلی به‌کار گرفته شود. استفاده از روش حاضر و تولید موج منظم در تانک عددی و شبیه‌سازی دقیق رفتار هیدرودینامی مبدل و بررسی جزئیات دقیق جریان سیال که در تحلیل تجربی قابل ارزیابی نمی‌باشد، باعث ارائه‌ی یک راه حل دقیق و مناسب برای دستیابی به بهترین ابعاد و جانمائی این مبدل در شرایط واقعی دریا می‌گردد. نتایج دقیق شبیه‌سازی عددی در مقابل داده‌های تجربی موجود و امکان تحلیل دقیق جزئیات جریان در مقابل پژوهش‌های آزمایشگاهی از نقاط برجسته‌ی این مطالعه می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Performance analysis and investigation of the forces acting on the sea wave energy converter based on an oscillating water column under regular wave by numerical method

نویسندگان [English]

  • M Masoomi 1
  • M Yousefifard 2
1 Babol Noshirvani University of Technology, Department of Mechanical Engineering
2 Babol Noshirvani University of Technology-department of mechanical engineering
چکیده [English]

In this study, a wave-energy converter based on the Oscillating Water Column is simulated using numerical method. Reynolds averaged Navier-Stokes equations are solved by applying a numerical method based on computational fluid dynamics and using an open source OpenFOAM code. A suitable solver for considering the effects of free surface as well as the effects of turbulence is chosen. Numerical validation was performed based on the published experimental results and for a 2D problem. The changes in the water free surface inside the converter, the air pressure as well as the converter efficiency were presented and the effects of the wave parameters on the hydrodynamic performance of the converter were evaluated. Also, the forces acting on the OWC in different conditions are presenterd and can be used in the design of coastal structures. Using the current method and generating regular waves in a numerical tank, and accurately simulating the hydrodynamic characteristics of the converter, and examining the exact parameters of fluid that is not measurable in the experimental analysis, provides a precise and appropriate solution for achieving the best dimensions and location of the converter in terms of the real sea conditions. The accurate results of numerical simulation against the available experimental data and the possibility of detail analysis of flow characteristics versus experimental measurements are highlights of this study.

کلیدواژه‌ها [English]

  • Wave energy convertor
  • oscillating water column
  • Renewable Energy
  • Computational fluid dynamics
[1]    Maeda, H., Kinoshita, T., Masuda, K., Kato, W., “Fundamental research on oscillating water column wave power absorbers”, Journal of energy resources technology, Vol. 107 (1), pp: 81-86, 1985.

[2]    Takahashi, S., Nakada, H., Ohneda, H., Shikamori, M., “Wave power conversation by prototype wave power extracting Caisson in Sakata port”, Coastal Engineering, Vol. 23, pp: 3440-3453, 1992.

[3]    Howe, D., Nader, J.R., “OWC WEC integrated within a breakwater versus isolated: experimental and numerical theoretical study”, International Journal of Marine Energy, Vol. 20, pp. 165-182, 2017.

[4]    Rezanejad, K., Bhattacharjee, J., Guedes Soares, C., “Stepped sea bottom effects on the efficiency of nearshore oscillating water column device”, Ocean Engineering, Vol. 70, pp: 25-38, 2013.

[5]    Ashlin, S.J., Sannasiraj, S.A., Sundar, V., “Performance of an array of oscillating water column devices integrated with an offshore detached breakwater”, Ocean Engineering, Vol. 163, pp: 518-532, 2018.

[6]    He, F., Huang, Zh., “Hydrodynamic performance of pile-supported OWC-type structures as breakwaters: An experimental study”, Ocean Engineering, Vol. 88, pp: 618-626, 2014.

[7]    Elhanafi, A., Macfarlane, G., Fleming, A., Leong, Zh., “Experimental and numerical measurements of wave forces on a 3D offshore stationary OWC wave energy converter”, Ocean Engineering, Vol. 144, pp: 98-117, 2017.

[8]    Xu, C., Huang, Zh., “Three-dimensional CFD simulation of a circular OWC with a nonlinear power-takeoff: Model validation and a discussion on resonant sloshing inside the pneumatic chamber”, Ocean Engineering, Vol. 176, pp: 184-198, 2019.

[9]    Rezanejad, K., Souto-Iglesias, A., Guedes Soares, C., “Experimental investigation on the hydrodynamic performance of an L-shaped duct oscillating water column wave energy converter”, Ocean Engineering, Vol 173, pp: 388-398, 2019.

[10]         Ning, D., Zhou, Y., Zhang, Gh., “Hydrodynamic modeling of a novel dual-chamber OWC wave energy converter”, Applied Ocean Research, Vol. 78, pp: 180-191, 2019.

[11]         Zabihi, M., Mazaheri, S., Montazeri Namin, M., “Experimental hydrodynamic investigation of a fixed offshore Oscillating Water Column device”, Applied Ocean Research, Vol. 85, pp. 20-33, 2019.

[12]         Elhanafi, A., Macfarlane, G., Ning, D., “Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD”, Applied Energy, Vol. 228, pp. 82-96, 2018.

[13]         Simonetti, I., Cappietti, L., Oumeraci, H., “An empirical model as a supporting tool to optimize the main design parameters of a stationary oscillating water column wave energy converter”, Applied Energy, Vol. 231, pp: 1205-1215, 2018.

[14]         Teixeira, P.R.F., Davyt, D.P., Didier, E., Ramalhais, R., “Numerical simulation of an oscillating water column device using a code based on Naviere-Stokes equations”, Energy, Vol. 61, pp: 513-530, 2013.

[15]         Pawitan, K.A., Dimakopoulos, A.S., Vicinanza, D., Allsop, W., Bruce, T., “A loading model for an OWC caisson based upon large-scale measurements”, Coastal Engineering, Vol. 145, pp: 1-20, 2019.

[16]         Lauro, E.D., Lara, J.L., Maza, M., Losada, I.J., Contestabile, P., Vicinanza, D., “Stability analysis of a non-conventional breakwater for wave energy conversion”, Coastal Engineering, Vol. 145, pp: 36-52, 2019.

[17]         Luo, Y., Nader, J.R., Cooper, P., Zhu, S.P., “Nonlinear 2D analysis of the efficiency of fixed Oscillating Water Column wave energy converters”, Renewable Energy, Vol. 64, pp: 255-265, 2014.

[18]         Ashlin, S.J., Sundar, V., Sannasiraj, S.A., “Effects of bottom profile of an oscillating water column device on its hydrodynamic characteristics”, Renewable Energy, Vol. 96, pp. 341-353, 2016.

[19]         Connell, K.O., Thiebaut, F., Kelly, G., Cashman, A., “Development of a free heaving OWC model with non-linear PTO interaction”, Renewable Energy, Vol. 117, pp: 108-115, 2018.

[20]         Daniel Raj, D., Sundar, V., Sannasiraj, S.A., “Enhancement of hydrodynamic performance of an Oscillating Water Column with harbour walls”, Renewable Energy, Vol. 132, pp: 142-156, 2019.

[21]         Rezanejad, K., Gadelho, J.F.M., Guedes Soares, C., “Hydrodynamic analysis of an oscillating water column wave energy converter in the stepped bottom condition using CFD”, Renewable Energy, Vol. 135, pp: 1241-1259, 2019.

[22]         Elhanafi, A., “Prediction of regular wave loads on a fixed offshore oscillating water column-wave energy converter using CFD”, Journal of Ocean Engineering and Science, Vol. 1(4), pp. 268-283, 2016.

[23]         Kamath, A., Bihs, H., Arntsen, Ø.A., “Numerical investigations of the hydrodynamics of an oscillating water column device”, Ocean Engineering, Vol. 102, pp: 40-50, 2015.

[24]         Morris-Thomas, M.T., Irvin, R.J., Thiagarajan, K.P., “An Investigation Into the Hydrodynamic Efficiency of an Oscillating Water Column”, Journal of Offshore Mechanics and Arctic Engineering, Vol. 129, pp. 273-278, 2007.

[25]         Jasak, H., “Error Analysis and Estimation for the Finite Volume Method with Applications to Fluid Flows”, Imperial College, London, UK, Ph.D.thesis, 1996.

[26]         Rusche, H., “Computational Fluid Dynamics of Dispersed Two-phase Flows at High Phase Fractions”, Imperial College, London, UK, Ph.D.thesis, 2002.

[27]         Berberović, E., Van Hinsberg, N., Jakirlić, S., Roisman, I., Tropea, C., “Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution”, Physical Review E, Vol. 79(3), pp: 36306, 2009.

[28]         Menter, F.R., “Review of the shear-stress transport turbulence model experience from an industrial perspective”, International Journal of Computational Fluid Dynamics, Vol. 23(4), pp: 305–316, 2009.