تاثیر ثابت / متغیر بود چگالی فاز مایع در مدلسازی عددی جریان دوفازی لایه ای-موجی با استفاده از مدل دو سیالی تک فشار

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد ساری

2 دانشجوی دکتری گروه مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد ساری

چکیده

در این مقاله یک مطالعه عددی جهت بررسی تاثیر ثابت / متغیر بودن چگالی فاز مایع در مدل دو سیالی تک فشار انجام شده است. معادلات مدل دو سیالی با بکارگیری الگوریتم عددی تسخیر شاک پایستار بصورت عددی حل شده‌اند. مدلسازی عددی به اینصورت بوده است که، مدل دو سیالی یک بار با فرض ثابت بودن چگالی فاز مایع و یک با فرض متغیر بودن چگالی فاز مایع حل شده است. برای بررسی تاثیر ثابت / متغیر بود چگالی فاز مایع سه مساله نمونه با شرایط فشار متفاوت بکارگیری شده است. نتایج نشان داده اند در شرایط فشار اتمسفر تغییرات چگالی فاز مایع قابل صرف نظر کردن است و تاثیری در دقت نتایج مدل دو سیالی تک فشار ندارد. در شرایطی که گرادیان شدید فشار بر مسأله حاکم باشد متغیر بودن چگالی فاز مایع در مدل دو سیالی تک فشار سبب انحراف نتایج عددی شده است. بنابراین، در شرایطی که گرادیان شدید فشار بر مسأله حاکم است مدل دو سیالی تک فشار با فرض ثابت بودن چگالی فاز مایع، مدل دقیق تری است.

کلیدواژه‌ها


عنوان مقاله [English]

compressibility Effect in Two-Phase stratified-wavy Flow Numerical Modeling by single pressure Two-Fluid Model

نویسندگان [English]

  • V Shokri 1
  • m falahati naghibi 2
1 Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran
2 Department of Mechanical Engineering, Sari Branch, Islamic Azad University, Sari, Iran
چکیده [English]

In this paper, a numerical study was conducted to study the effect of the liquid phase compressibility variability in the two-fluid single-pressure model. The two-fluid model is solved by a class of conservative shock-capturing method.The two-fluid model is solved once with the assumption that the density of the liquid phase and one is assumed, assuming that the liquid phase density is varied. In order to examine the compressibility effect, the liquid phase density of the three sample problems was used with different pressure conditions. The results show that, under atmospheric conditions, variations in the density of the liquid phase can be neglected and have no effect on the accuracy of the results of the two-fluid single-pressure model. In the case of extreme pressure gradients, the variability of the liquid phase density in a two-fluid single-pressure model causes deviation of numerical results. Therefore, in the case of extreme pressure gradients, two-fluid single-pressure model is a more accurate model assuming that the liquid phase density is constant.

کلیدواژه‌ها [English]

  • Two-fluid model
  • Numerical Modeling
  • liquid Compressibility
[1] Omgba-Essama, C., Numerical Modelling of Transient Gas-Liquid Flows (Application to Stratified & Slug Flow Regimes),  Thesis, 2004.

[2] Ishii, M., "Thermo-Fluid Dynamic Theory of Two-Phase Flow", Eyrolles, Paris 1975.

[3] Ishii, M., Mishima, K., "Two-Fluid Model and Hydrodynamic Constitutive Relations", Nuclear Engineering and Design, Vol.82, No.2, pp.107-126, 1984.

[4] Cortes, J., Debussche, A., Toumi, I., "A Density Perturbation Method to Study the Eigenstructure of Two-Phase Flow Equation Systems", Journal of Computational Physics, Vol.147, No.2, pp.463-484, 1998.

[5] Song, J.H., Ishii, M., "The Well-Posedness of Incompressible One-Dimensional Two-Fluid Model", International Journal of Heat and Mass Transfer, Vol.43, No.12, pp.2221-2231, 2000.

[6] Evje, S., Flåtten, T., "Hybrid Flux-Splitting Schemes for a Common Two-Fluid Model", Journal of Computational Physics, Vol.192, No.1, pp.175-210, 2003.

[7] Issa, R., Kempf, M., "Simulation of Slug Flow in Horizontal and Nearly Horizontal Pipes with the Two-Fluid Model", International journal of Multiphase Flow, Vol.29, No.1, pp.69-95, 2003.

[8] Liao, J., "Modeling Two-Phase Transport During Cryogenic Chilldown in a Pipeline: University of Florida Gainesville, FL, 2005.

[9] Issa, R., Bonizzi, M., Barbeau, S., "Improved Closure Models for Gas Entrainment and Interfacial Shear for Slug Flow Modelling in Horizontal Pipes", International journal of Multiphase Flow, Vol.32, No.10, pp.1287-1293, 2006.

[10] Hanyang, G., Liejin, G., "Stability of Stratified Gas-Liquid Flow in Horizontal and Near Horizontal Pipes** Supported by the National Natural Science Foundation of China (No. 50521604) and Shanghai Jiao Tong University Young Teacher Foundation", Chinese Journal of Chemical Engineering, Vol.15, No.5, pp.619-625, 2007.

[11] Ansari, M., Shokri, V., "New Algorithm for the Numerical Simulation of Two-Phase Stratified Gas–Liquid Flow and its Application for Analyzing the Kelvin–Helmholtz Instability Criterion with Respect to Wavelength Effect, Nuclear Engineering and Design, Vol.237, No.24, pp.2302-2310, 2007.

[12] Holmås, H., Sira, T., Nordsveen, M., Langtangen, H., Schulkes, R., "Analysis of a 1D Incompressible Two-Fluid Model Including Artificial Diffusion", IMA Journal of Applied Mathematics, Vol.73, No.4, pp.651-667, 2008.

[13] Holmås, H., "Numerical Simulation of Tansient Roll-Waves in Two-Phase Ripe Flow", Chemical Engineering Science, Vol.65, No.5, pp.1811-1825, 2010.

[14] Ansari M., Shokri V., "Numerical Modeling of Slug Flow Initiation in a Horizontal Channels using a Two-Fluid Model", International Journal of Heat and Fluid Flow, Vol.32, No.1, pp.145-155, 2011.

[15] Ansari, M., Daramizadeh, A., "Slug Type Hydrodynamic Instability Analysis using a Five Equations Hyperbolic Two-Pressure, Two-Fluid Model", Ocean Engineering, Vol.52, pp.1-12, 2012.

[16] Zeng, Q., Aydemir, N., Lien, F., Xu, T., "Comparison of Implicit and Explicit AUSM‐Family Schemes for Compressible Multiphase Fows", International Journal for Numerical Methods in Fluids, Vol.77, No.1, pp.43-61, 2015.

[17] Shokri, V., Esmaeili, K., "Comparison of the Effect of Hydrodynamic and Hydrostatic Models for Pressure Correction Term in Two-Fluid Model in Gas-Liquid Two-Phase Flow Modeling", Journal of Molecular Liquids, Vol.237, pp.334-346, 2017.

[18] Bonzanini, A., Picchi, D., Poesio, P., "Simplified Compressible Two-Fluid Model with Artificial Diffusion for Slug Flow Capturing in Horizontal and Nearly Horizontal Pipes, Energies, Vol.10, No.9, pp.1372, 2017.

[19] Ferrari, M. Bonzanini, Poesio A.P., "A 5‐Equation, Transient, Hyperbolic, 1‐dimensional Model for Slug Capturing in Pipes", International Journal for Numerical Methods in Fluids, Vol.85, No.6, pp.327-362, 2017.

[20] Netto, J.F., Gonçalves, G., Freire A.S., "Statistical Moments Transport Model for the prediction of slug flow properties, International Journal of Multiphase Flow, Vol.120, pp.103086, 2019.

[21]Emamzadeh, M., Issa, R. I., "One Dimensional  Model for Numerical Simulation of Annular Flow in Horizontal and Vertical Pipes", Multiphase Science and Technology, Vol.25, No.1, 2013.

[22] Emamzadeh M., Issa, R.I., "A Model for Predicting the Transition Between  Stratifield  and Annular Flow in Horizantal Pipes", Multiphase Science and Technology, Vol.25, No.1, 2013.

[23] Figueiredo, A.B., Baptista, R.M., de, F.B. Freitas Rachid, Bodstein G.C., "Numerical Simulation of Stratified-Pattern Two-Phase Flow in Gas Pipelines using a Two-Fluid Model", International Journal of Multiphase Flow, Vol.88, pp.30-49, 2017.

[24]Ndjinga, M., Chalons, C., "Numerical Simulation of an Incompressible Two-Fluid Model",  in: Finite Volumes for Complex Applications VII-Elliptic, Parabolic and Hyperbolic Problems, Eds., pp.919-926, 2014.

[25]Evje, S., Flåtten, T., "Hybrid Central-Upwind Schemes for Numerical Resolution of Two-Phase Flows", ESAIM: Mathematical Modelling and Numerical Analysis, Vol.39, No.2, pp.253-273, 2005.

[26] Abood, S., Abdulwahid M., Almudhaffar M., "Comparison Between the Experimental and Numerical Study of (air-oil) Flow Patterns in Vertical Pipe", Case Studies in Thermal Engineering, Vol.14, pp.100424, 2019.

[27] Ban, S., Pao W., Nasif M.S., "Numerical Simulation of Two-Phase Flow Regime in Horizontal Pipeline and its Validation", International Journal of Numerical Methods for Heat & Fluid Flow, Vol.28, No.6, pp.1279-1314, 2018.

[28] Munkejord S.T., Hammer M., "Depressurization of CO 2-Rich Mixtures in Pipes: Two-Phase Flow Modelling and Comparison with Experiments", International Journal of Greenhouse Gas Control, Vol.3, pp. 398-411, 2015.

[29] Toro, E. F., "Riemann Solvers and Numerical Methods for Fluid Dynamics: a Practical Introduction", Springer Science & Business Media, 2013.

[30] Hirsch, C., "Numerical Computation of Internal and External Flows: The Fundamentals of Computational Fluid Dynamics: Butterworth-Heinemann, 2007.

[31] Shekari,Y., Hajidavalloo, E., "Application of Osher and PRICE-C Schemes to Solve Compressible Isothermal Two-Fluid Models of Two-Phase Flow", Computers & Fluids, Vol.86, pp.363-379, 2013.

[32] Toumi, I., "An Upwind Numerical Method for Two-Fluid Two-Phase Flow Models", Nuclear Science and Engineering, Vol.123, No.2, pp.147-168, 1996.