نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی برق-کنترل، دانشکده مهندسی، دانشگاه فردوسی مشهد

2 دانشجوی دکتری مهندسی برق-کنترل، دانشکده مهندسی، دانشگاه فردوسی مشهد

3 استاد گروه مهندسی برق، دانشکده مهندسی، دانشگاه فردوسی مشهد

چکیده

ردیابی هدف با استفاده از اندازه‌گیری سمت یکی از روش‌های اصلی در ردیابی غیرفعال اهداف متحرک زیر دریا به شمار می‌رود. در این مساله همواره انتخاب نوع فیلتر و دقت تخمین‌های صورت گرفته از متغیرهای حالت هدف از مهم‌ترین موضوعات بوده است؛ اما در بسیاری از موارد و کاربردهای این نوع از ردیابی، وجود داده‌ پرت در اندازه‌گیری‌ها اجتناب‌ناپذیر است که موجب کاهش دقت تخمین‌ها یا ناپایداری در عملکرد فیلترهای ردیابی می‌شود. در این مقاله برای غلبه بر این مشکل روشی جدید بر مبنای تخمین مقاوم در ساختار فیلتر کالمن مکعبی درجه پنج ارائه می‌شود. در این روش ابتدا داده‌های پرت در اندازه‌گیری شناسایی شده و با استفاده از تابع وزنی هوبر، وزن این داده‌های مخرب کاهش می‌یابد. آنالیز انجام شده بر روی یک مساله ردیابی هدف زیر دریا در سه حالت بدون حضور داده پرت، وجود داده‌های پرت کوچک در چند اندازه‌گیری پیوسته و حضور داده پرت بزرگ اندازه‌گیری بیانگر موثر بودن روش ارائه شده بوده به طوری که دقت تخمین‌های صورت گرفته توسط فیلتر انتخابی همچنان در سطح قابل قبولی می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Underwater Target Tracking by Bearing-Only Measurements Using Robust Fifth-Degree Cubature Kalman Filter in Presence of Outliers

نویسندگان [English]

  • Mohammad Amin AhmadPour kakhk 1
  • Majid Akbarian 2
  • Naser Pariz 3

1 ferdowsi university of mashad

2 ferdowsi university of mashad

3 ferdowsi university of mashad

چکیده [English]

Target tracking by bearing-only measurements is one of the main methods for passive tracking of underwater moving targets. In this problem, the choice of filter type and accuracy of estimates from target state variables have always been the most important topics, but in many cases and applications of this kind of tracking, the presence of outliers in the measurements are unavoidable which reduce the accuracy of estimates or stability in the performance of the tracking filters. In this paper, to overcome this problem, a new method based on a robust M-estimation in fifth-degree cubature Kalman filter structure is presented. In this method, the outlier in the measurement is detected, and the weight of this malicious data is reduced using Huber's weight function. Analysis of the underwater target tracking problem are discussed in three situations: without the presence of outliers, the presence of small outliers in some continuous measurements and the presence of large outliers. This analysis indicates the effectiveness of the proposed method so that the accuracy of the estimates made by the selected filter is still at an acceptable level.

کلیدواژه‌ها [English]

  • Target Tracking
  • Bearing-Only Tracking
  • Robust Fifth-Degree Cubature Kalman Filter
  • outliers

 [1]      Bar-Shalom, Y. and Rong Li, X., Multitarget Multisensor Tracking: Principles and Techniques, YBS Publishing, 3rd Edition , 1995.

 [2]      Wan, M., Li, P. and Li, T., “Tracking Maneuvering Target with Angle-only Measurements using IMM Algorithm based on CKF,” in International Conference on Communications and Mobile Computing (CMC), pp.92-96, 2010.

 [3]      Julier, S., Uhlmann, J. and Durrant-Whyte, H. F., “A New Method for the Nonlinear Transformation of Means and Covariances in Filters and Estimators,” IEEETransactions on Automatic Control, Vol.45, No.3, pp.477–482, 2000.

 [4]      Yang, T., Mehta, P. G. and Meyn, S. P., “Feedback particle filter,” IEEE transactions on Automatic Control, Vol.58, No.10, pp.2465–2480, 2013.

 [5]      Karlgaard, C. D. and Schaub, H., “Huber-based Divided Difference Filtering,” Journal of Guidance, Control, and Dynamics, Vol.30, No.3, pp.885–891, 2007.

 [6]      Wang, X., Cui, N. and Guo, J., “Huber-based Unscented Filtering and its Application to Vision-based Relative Navigation,” IET Radar, Sonar & Navigation, Vol.4, no.1, pp.134–141, 2010.

 [7]      Chang, L., Hu, B., Chang, G. and Li, A., “Robust Derivative-free Kalman Filter based on Huber’s M-estimation methodology,” Journal of Process Control, Vol.23, No.10, pp.1555–1561, 2013.

 [8]      Song, T. and Speyer, J., “A stochastic analysis of a Modified Gain Extended Kalman Filter with Applications to Estimation with Bearings Only Measurements,” IEEE Transactions on Automatic Control, Vol.30, No.10, pp.940–949, 1985.

 [9]      Arasaratnam, S. and Haykin, S., “Cubature Kalman Filters,” IEEE Transactions on Automatic Control, Vol.54, No.6, pp.1254-1269, 2009.

 [10]  Leong, P. H., Arulampalam, S., Lamahewa, T. A. and Abhayapala, T. D., “Gaussian-sum Cubature Kalman Filter with Improved Robustness for Bearings-only Tracking,” IEEE Signal Processing Letters, Vol.21, no.5, pp.513–517, 2014.

 [11]  Wu, H., Chen, S., Yang, B., and Luo, X., “Robust Range-Parameterized Cubature Kalman Filter for Bearings-only Tracking,” Journal of Central South University, Vol.23, No.6, pp.1399–1405, 2016.

 [12]  Wu, H., Chen, S., Yang, B. and Chen, K., “Robust Derivative-Free Cubature Kalman Filter for Bearings-Only Tracking” Journal of Guidance, Control and Dynamics, pp.1–6, 2016.

 [13]  Song, Q. and Han, J.-D., “An Adaptive UKF Algorithm for the State and Parameter Estimations of a Mobile Robot,” Acta Automatica Sinica, Vol.34, No.1, p.72, 2008.

 [14]  Yu, J. Y., Coates, M. J., Rabbat, M. G. and Blouin, S., “A Distributed Particle Filter for Bearings-only Tracking on Spherical Surfaces,” IEEE Signal Processing Letters, Vol.23, No.3, pp.326–330, 2016.

 [15]  Huang, G., Zhou, K., Trawny, N. and Roumeliotis, S. I., “A Bank of Maximum a Posteriori (MAP) Estimators for Target Tracking,” IEEE Transactions on Robotics, Vol.31, No. 1, pp.85–103, 2015.

 [16]  Radhakrishnan, R., Bhaumik, S., Tomar, N. K., and Singh A. K., “Bearing-Only Tracking Using Sparse-Grid Gauss–Hermite Filter,” in Intelligent Computing and Applications, Springer, pp.349–356. 2015.

 [17]  Li, L. and Xie, W., “Bearings-only Maneuvering Target Tracking based on Fuzzy Clustering in a Cluttered Environment,” Aeu-International Journal of Electronics and Communications, Vol.68, No.2, pp.130–137, 2014.

 [18]  Zhu, W., Wang, W. and Yuan, G., “An Improved Interacting Multiple Model Filtering Algorithm based on the Cubature Kalman Filter for Mmaneuvering Target Tracking,” Sensors, Vol.16, No.6, p.805, 2016.

 [19]  Sabet, M. T., Fathi, A. R. and Daniali, H. R. M., “Optimal Design of the Own Ship Maneuver in the Bearing-only Target Motion Analysis Problem using a Heuristically Supervised Extended Kalman Filter,” Ocean Engineering, Vol.123, pp.146–153, 2016.

 [20]  Huang, Y. and Song, T. L., “Iterated Modified Gain Extended Kalman Filter with Applications to Bearings Only Tracking,” Journal of Automation and Control Engineering, Vol.3, No.6, 2015.

 [21]  Lakshmi, M. K., Rao, S. K., Subrahmanyam K., and Tilak V. G., “Passive Object Tracking Using MGEKF Algorithm,” in Information and Decision Sciences, Springer, pp.277–287, 2018.

 [22]  Alexandri, T., and Diamant, R., “A Reverse Bearings Only Target Motion Analysis for Autonomous Underwater Vehicle navigation," IEEE Transactions on Mobile Computing, 2018.

 [23]  Bekiroglu, K., Ayazoglu, M., Lagoa, C., and Sznaier, M., “Hankel Matrix Rank as Indicator of Ghost in Bearing-only Tracking,” IEEE Transactions on Aerospace and Electronic Systems, 2018.

 [24]  Radhakrishnan, R., Bhaumik, S., and Tomar, N. K., “Gaussian sum shifted Rayleigh filter for underwater Bearings-only Target Tracking Problems,” IEEE Journal of Oceanic Engineering, No.99, pp.1–10, 2018.

 [25]  Wolek, A., Dzikowicz, B. R., McMahon J., and Houston B. H., “At-Sea Evaluation of an Underwater Vehicle Behavior for Passive Target Tracking,” IEEE Journal of Oceanic Engineering, No.99, pp.1–10, 2018.

 [26]  Hong, J. Kim, Y., and Bang, H., “Cooperative Circular Pattern Target Tracking using Navigation Function,” Aerospace Science and Technology, Vol.76, pp.105–111, 2018.

 [27]  Huang, Y. and Zhang, Y., “Robust Student’s t-based Stochastic Cubature Filter for Nonlinear Systems with Heavy-tailed Process and Measurement Noises,” IEEE Access, Vol.5, pp.7964–7974, 2017.

[28]  Roh, H., Cho, M.-H., and Tahk, M.-J., “Trajectory Optimization Using Cramér-Rao Lower Bound for Bearings-Only Target Tracking,” in 2018 AIAA Guidance, Navigation, and Control Conference, 2018.

[29]  Jia, B., Xin, M., and Cheng, Y., “High-   degree cubature Kalman Filter,” Automatica,  Vol.49, No.2, pp.510–518, 2013.

[30]  Li, K., Hu, B., Chang, L., and Li, Y., “Robust Square-Root Cubature Kalman Filter based on Huber’s M-estimation Methodology,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol.229, No.7, pp.1236–1245, 2015.