نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مجتمع مکانیک، دانشگاه صنعتی مالک اشتر

2 استادیار مجتمع مکانیک، دانشگاه صنعتی مالک اشتر

چکیده

در این مقاله دو روش خط برآزا و حجم محدود برای شبیه‌سازی عددی هیدرودینامیکی دو پروانه مغروق انجام شد. روش خط برآزا بر اساس جریان پتانسیل و تئوری گردابه برای طراحی و تحلیل سریع عملکرد هیدرودینامیکی پروانه پایه‌ریزی شده است. در مقابل، روش حجم محدود بر اساس گسسسته‌سازی معادلات ناویراستوکس بنا شده است. در این مقاله، دقت و سرعت عملکرد این دو روش برای تحلیل پروانه مغروق بررسی گردیده است. برای اعتبارسنجی روش‌ها، از هندسه و نتایج تست آزمایشگاهی دو پروانه VP1304 و DTMB4119 استفاده شده است. روش حجم محدود، در تمامی ضرایب پیش‌روی، نتایج قابل قبولی برای ضرایب تراست و گشتاور ارائه می‌دهد ولی زمان پیش‌پردازش و هزینه محاسباتی بالایی دارد. در مقابل، روش خط برآزا در ضرایب پیش‌روی پایین نتایج قابل قبولی ارائه نمی‌دهد ولی زمان حل و پردازش بسیار کمی دارد و برای مطالعات پارامتری مناسب است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Numerical Simulation of Hydrodynamic Performance of the Submerged Propeller with Lifting Line and Finite Volume Methods

نویسندگان [English]

  • Omid Bordbar 1
  • Mahmoud Rostami Varnousfaaderani 2

1 Mechanical Engineering Department, Malek Ashtar University of Technology

2 Mechanical engineering Department,Malek-Ashtar University of technology

چکیده [English]

In this paper, lifting line theory(LLT) and finite volume method (FVM) have been used for numerical simulation of hydrodynamic performance of marine propeller. The LLT is based on the potential flow and vortex theory to quickly design and analyze the marine propeller. On the other hand, the FVM is based on the discretization of the Navier-stocks equations. In this paper, the accuracy and efficiency of these two methods have been investigated for analyzing the performance of the submerged propeller. In order to validate the methods, the geometry and experimental results of the VP1304 and DTMB4119 propellers have been used. For studying the hydrodynamic performance of marine propeller,the torque and thrust coefficients versus advance ratio were computed by FVM and LLT. For all of the advance ratios, the FVM provides acceptable thrust and torque coefficients. Wheras its preprocessing and processing times are high. In return, the LLT in low advance ratios did not calculate the satisfactory results. Wheras it needs short cpu time to process.Therefore it is suitable for parametric studies.

کلیدواژه‌ها [English]

  • numerical simulation
  • Propeller Hydrodynamic
  • Lifting Line Theory
  • Finite Volume Methods
  • Thrust and Torque Coefficients

[1] Morgan, William B., Vladimir Silovic, and Stephen B. Denny. “Propeller Lifting-Surface Corrections”, No. HY-11. Hydro-And Aerodynamics Lab Lyngby (Denmark) Hydrodynamics Section, 1968.

[2] Giannakakis, Panagiotis. “Design Space Exploration and Performance Modelling of Advanced Turbofan and Open-Rotor Engines”, (MS thesis), 2013.

[3] Menéndez Arán, David H., and Spyros A. Kinnas. “On Fully Aligned Lifting Line Model for Propellers: An assessment of Betz Condition”, Journal of Ship Research, Vol.58, No.3, pp.130-145, 2014.

[4] Gonzalez-Martino, I. “Development of Moderate-Cost Methodologies for the Aerodynamic Simulation of Contra-Rotating Open Rotors”, Diss. Université Pierre et Marie Curie-Paris VI, 2014.

[5] Epps, Brenden P., and Richard W. Kimball. “Unified Rotor Lifting Line Theory” Journal of Ship Research, Vol.57, No.4, pp.181-201, 2013.

[6] Portner, S.M. “Design of a Low Reynolds Number Propulsion System for an Autonomous Underwater Vehicle (MS thesis)”, Diss. Virginia Tech, 2014.

[7] Giovani, D., “A Fully Numerical Lifting Line Method for the Design of Heavily Loaded Marine Propellers with Rake and Skew”, MS thesis, Diss. Massachusetts Institute of Technology, 2015.

[8] Van Arnhem, N., “Design and Analysis of an Installed Pusher Propeller with Boundary Layer Inflow” (MS thesis), 2015.

[9] Epps, Brenden, “On the Rotor Lifting Line Wake Model”, Journal of Ship Production and Design, Vol.33, No.1, pp.31-45, 2017.

[10] Zheng, Xue-ke, “The Efficiency Analysis of High-Altitude Propeller based on Vortex Lattice Lifting Line Theory” The Aeronautical Journal, Vol.121, pp.141-162, 2017.

[11] Vernengo, G., Bonfiglio, L., and Brizzolara, S.. “Supercavitating Three-Dimensional Hydrofoil Analysis by Viscous Lifting-Line Approach”, AIAA J., 2017.

[12] Harwood, Casey M., Yin L. Young, and Steven L. Ceccio. “Ventilated Cavities on a Surface-Piercing Hydrofoil at Moderate Froude Numbers: Cavity Formation, Elimination and Stability”, Journal of Fluid Mechanics, Vol.800, pp.5-56, 2016.

[13] DU, Weikang, “Rans/Lifting Line Model Interaction Method for the Design of Ducted Propellers and Tidal Turbines”, 2017.

[14] Jiang, J., “A Ship Propeller Design Methodology of Multi-objective Optimization Considering Fluid–Structure Interaction”, Engineering Applications of Computational Fluid Mechanics, pp.1-13, 2017.

[15] Shamsi R., Ghassemi H., Iranmanesh M., “A Comparison of the BEM and RANS Calculations for the Hydrodynamic Performance of the PODS”, Mechanics & Industry, Vol. 18, No.10, pp.1-12,  2016.

[16] Ghassemi H., Allafchi F., “A New Implementation of Vortex Lattice Method Applied to theHydrodynamic Performance of the Propeller-Rudder”, Journal Of Ocean, Mechanical and Aerospace-science And Engineering, Vol.16, No.2, pp.6-11, 2015.

[17] Yari E., Ghassemi, H., “Boundary Element Method Applied to Added Mass Coefficient Calculation of the Skewed Marine Propellers”, Polish Maritime Research, Vol.23, No.2, pp.25 - 31, 2016.

[18] Konstantinos, K. “Modeling Considerations of the Optimum Rotor using Vortex Method”, Ph.D. Thesis, Diss. Denmark: Technical University of Denmark, 2008.

[19] Anderson Jr, John D., “Fundamentals of Aerodynamics”, Tata McGraw-Hill Education, 2010.

[20] Barkmann, U. “Potsdam Propeller Test Case (PPTC)-Open Water Tests with the Model Propeller VP1304”, 2011.

[21]  Stuartdodge, J., “An Experimental Investigation of Viscous Aspects of Propeller Blade Flow”, Ph.D. Thesis, 1989.