نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی مکانیک، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران

2 استاد یار پژوهشی پژوهشگاه صنعت نفت تهران

3 باشگاه پژوهشگران جوان و نخبگان واحد اسلامشهر، دانشگاه آزاد اسلامی، واحد اسلامشهر، ایران

چکیده

در این مقاله با بررسی سیکل همزمان تولید برق و حرارت از دیدگاه اگزرژی و اگزرژی اقتصادی ، تاثیر نسبت فشار کمپرسور، دمای ورودی به توربین گاز و فشار بخار بویلر بازیاب بررسی شده است. نتایج نشان می‌دهد که بازده انرژی و اگزرژی سیکل CHP از سیکل توربین گاز بیشتر بوده و بیشترین اتلاف اگزرژی در محفظه احتراق می‌باشد. بازده اگزرژی با افزایش نسبت فشار کمپرسور تا یک مقدار بهینه ابتدا افزایش و سپس کاهش می‌یابد. با افزایش دمای ورودی به توربین گاز بازده اگزرژی افزایش ، اتلاف اگزرژی و میزان نرخ هزینه کاهش تلفات اگزرژی کاهش می‌یابد. با افزایش دمای بخار اشباع در سیکل CHP ، بازده انرژی کاهش ولی بازده اگزرژی افزایش می‌یابد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigation the effect of important design parameters from the perspective of Exergy in the generation of electricity and heat cycle (CHP)

نویسندگان [English]

  • H aghababayi 1
  • M.R Habibi 2
  • M Azami 3

1 Since and Research branch Islamic Azad University , Teran , Iran

2 Research institute of petroleum industry , Iran , Tehran

3 Young Researchers and Elite Club, Islamshahr Branch

چکیده [English]

In this paper, the effect of the compressor pressure ratio, the input temperature to the gas turbine and the recovery pressure of the steam boiler is investigated by examining the simultaneous generation of electricity and heat from the perspective of economical exergy and exergy. The results show that the energy efficiency and exergy of the CHP cycle are greater than the gas turbine cycle and are the most common exergy loss in the combustion chamber. Exergy efficiency increases and then decreases by increasing the compressor pressure to an optimal amount. As the input temperature increases to the turbine gas, the exergy efficiency increases, the loss of exergy, and the rate of cost of the exergy casualties decreases. By increasing the temperature of the saturated vapor in the CHP cycle, the energy efficiency decreases but the exergy efficiency increases.

کلیدواژه‌ها [English]

  • Exergy economic
  • Cogeneration
  • compressor pressure ratio
  • pressure vapor recovery

[1] Cai, R. and Jiang, L., “Analysis of the Recuperative Gas Turbine Cycle with a Recuperator Located Between Turbines”, Applied Thermal Engineering, Vol.26, pp.89-96, 2006.

[2] Ameri, M., Ahmadi, P., and Khanmohammadi, S., “Exergy Analysis of a 420 MW Combined Cycle Power Plant”, International Journal of Energy Research, Vol.32, pp.175-183, 2008.

[3] Khaliq, A. and Dincer, I., “Energetic and Exergetic Performance Analyses of a Combined Heat and Power Plant with Absorption Inlet Cooling and Evaporative Aftercooling”, Energy, Vol.36, pp.2662-2670, 2011.

[4] Barzegar Avval, H., Ahmadi, P., Ghaffarizadeh, A., and Saidi, M., “Thermo Economic Environmental Multiobjective Optimization of a Gas Turbine Power Plant with Preheater using Evolutionary Algorithm”, International Journal of Energy Research, Vol.35, pp.389-403, 2011.

[5] Ameri, M. and Enadi, N., “Thermodynamic Modeling and Second Law based Performance Analysis of a Gas Turbine Power Plant (Exergy and Exergoeconomic Analysis)”, Journal of Power Technologies, Vol.92, p.183, 2012.

[6] Mousafarash, A. and Ameri, M., “Exergy and Exergo-Economic based Analyses of a Gas Turbine Power Generation System”, Journal of Power Technologies, Vol.93, p.44, 2013.

[7] Cengel, Y.A., and Boles, M.A., “Thermo-dynamics: an Engineering Approach”, Sea, Vol.1000, p.8862, 2002.

[8] Dincer, I. and Rosen M.A., “Exergy: Energy, Environment and Sustainable Development”, Newnes, 2012.

[9] Ahmadi, P., Rosen, M.A., and Dincer, I., “Greenhouse Gas Emission and Exergo-Environmental Analyses of a Trigeneration Energy System”, International Journal of Greenhouse Gas Control, Vol.5, pp.1540-1549, 2011.

[10] Ahmadi, P. and Dincer, I., “Exergo-Environmental Analysis and Optimization of a Cogeneration Plant System using Multimodal Genetic Algorithm (MGA)”, Energy, Vol.35, pp.5161-5172, 2010.

[11] Ahmadi, P., Dincer, I., and Rosen M.A., “Exergo-Environmental Analysis of an Integrated Organic Rankine Cycle for Trigeneration”, Energy Conversion and Management, Vol.64, pp.447-453, 2012.