نوع مقاله: مقاله پژوهشی

نویسندگان

1 استاد دانشکده مهندسی برق دانشگاه علم و صنعت ایران

2 دانشجوی کارشناسی ارشد دانشکده مهندسی برق، دانشگاه علم و صنعت ایران

3 استادیار دانشکده فناوری اطلاعات و ارتباطات، دانشگاه جامع امام حسین (ع)

چکیده

آشکارسازی اهداف متحرک کوچک در سامانه های دفاعی و نظامی بسیار مهم است. برای این منظور، استفاده از تصاویر مادون قرمز بر تصاویر مرئی ارجحیت دارد. چرا که در شرایطی مانند ناوبری انواع شناورها که در فضای دود و مه و گرد و غبار در دریا صورت می گیرد، تصاویر مرئی با هشدارهای کاذب فراوانی همراه هستند که عمل آشکارسازی هدف کوچک را بسیار دشوار می کنند. تاکنون روش های مختلفی برای آشکارسازی اهداف کوچک مادون قرمز و کاهش هشدارهای کاذب ارائه شده اند. در این مقاله ابتدا تصویر با استفاده از عملیات Top-Hat، که یک روش مبتنی بر پردازش ریخت شناسی است، بهبود داده می شود. سپس مسئله تشخیص هدف کوچک مادون قرمز، به عنوان یک مسئله تشخیص الگوی دوکلاسه در نظر گرفته می شود و از نگاشت شناختی فازی به منظور دسته بندی استفاده می گردد. نگاشت شناختی فازی یک روش هوشمند ساده، اما قدرتمند است که به منظور مدل سازی و تحلیل اطلاعات به کار می رود. این اولین بار است که از نگاشت شناختی فازی برای آشکارسازی اهداف کوچک مادون قرمز استفاده می شود. نتایج نشان می دهد روش نگاشت شناختی فازی توانسته است با دقت خوبی نسبت به سایر روش های شناسایی الگو عمل آشکارسازی را انجام دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Small moving targets detection in infrared image using fuzzy cognitive map

نویسندگان [English]

  • M.R Mousavi 1
  • R Azimi 2
  • M Nasiri 3

2 Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran

3 Department of Information and Communication Technology, Imam Hosein Comprehensive University

چکیده [English]

Abstract: Detection of small moving targets is of utmost importance in defense systems. For this purpose, using Infrared (IR) images is preferred to visible images for the reason that in circumstances such as marine navigation in fog and dust conditions, visible images are coming with false alarms that render the detection of small target difficult. So far different methods presented for IR small targets detection and false alarm reduction. In this study, first of all the image was enhanced with a morphological operation called Top-Hat. Then, the IR small target detection problem was considered as a tow-class pattern recognition problem and Fuzzy Cognitive Map (FCM) was applied for the classification. FCM is a simple, but also powerful intelligent method which is used for modeling and analysis of information. This paper is the first attempt to present FCM for IR small target detection. The obtained results indicate that FCM can detect the IR small targets with higher accuracy than any other pattern recognition methods.

کلیدواژه‌ها [English]

  • Classification
  • Small Targets
  • IR Image
  • PSO
  • FCM
  • Machine Learning

[1] Chengjun, L., Ying, W., and Zeling, S. “A Small Target Detection Algorithm based on Multi-scale Energy Cross,” IEEE Conference on Image and Signal Processing, Vol.2, pp.1191-1196, 2003.

[2] Sun, X., Liu, X., Tang, Z., Long, G. and Yu, Q. “Real-time Visual Enhancement for Infrared Small Dim Targets in Video,” Infrared Physics & Technology, Vol.83, pp.217-226, 2017.

[3] Soni, T., Zeidler, J. R., and Ku, W. H. “Performance Evaluation of 2-D Adaptive Prediction Filters for Detection of Small Objects in Image Data,” IEEE Transactions on Image Process, Vol.12, pp.383-397, 1997.

[4] Zhang, F., Li, C. F., and Shi, L. “Detecting and Tracking Dim Moving Point Target in IR Image Sequence,” Infrared Physical, Vol.46, No.4, pp.323-328, 2005.

[5] Yang, M. H., Kriegman, D. J., and Ahuja, N. “Detecting Faces in Images: a Survey,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol.24, No.1, pp.34-58, 2002.

[6] Hadhoud, M.M. and Thomas, D.W. “The Two-Dimensional Adaptive LMS (TDLMS) Algorithm,” IEEE Transaction Circuits Systems, Vol.35, No.5, pp.485-494, 1988.

[7] Peng, J.X. and Zhou, W.L. “Infrared Background Suppression for Segmenting and Detecting Small Target,” Acta Electronica Sinica, Vol.27, No.12, pp.47-51, 1999.

[8] Yang, L., Yang, J., and Yang, K. “Adaptive Detection for Infrared Small Target under Sea-sky Complex Background,” Electroninc Letter, Vol.40, No.17, pp.1083-1085, 2004.

[9] Deshpande, S.D., Er, M.H., Venkateswarlu, R., and Chan, P., “Max-Mean and Max-Median Filters for Detection of Small Targets,” SPIE Signal and Data Processing of Small Targets, pp.74-83, 1999.

[10] Mahalanobis, A., Muise, R., Stanfill, S., and Nevel, A. “Design and Application of Quadratic Correlation Filters for Target Detection,” IEEE Transactions on Aerospace and Electronic Systems, Vol.40, No.3, pp.837-850, 2004.

[11] Bae, T. W. “Small Target Detection using Bilateral Filter and Temporal Cross Product in Infrared Image,” Infrared Physics, Vol.54, No.5, pp.403-411, 2011.

[12] Wang, G. D., Chen, C. Y., and Shen, X. B. “Facet-Based Infrared Small Target Detection Method,” Computers and Electrical Engineering, Vol.41, No.22, pp.1244-1246, 2005.

[13] Zhang, F., Li, C., and Shi, L. “Detecting and Tracking Dim Moving Point Target in IR Image Sequence,” Infrared Physics & Technology, Vol.46, No.4, pp.323-328, 2005.

[14] Ye, B. and Peng, J. “Small Target Detection Method based on Morphology Top-hat Operator,” Journal of Image and Graphics, Vol. 7, No. 7, pp.638-642, 2002.

[15] Zeng, M. and Li, J. “The Small Target Detection in Infrared Image based on Adaptive Morphological Top-hat Filter,” Journal of Shanghai Jiao Tong University, Vol.40, No.1, pp.90-93, 2006.

[16] Shao, X., Fan, H., Lu, G., and Xu, J. “An Improved Infrared Dim and Small Target Detection Algorithm based on the Contrast Mechanism of Human Visual System,” Infrared Physics & Technology, Vol.55, No.5, pp.403-408, 2012.

[17] Wang, X., Lv, G., and Xu, L. “Infrared Dim Target Detection based on Visual Attention,” Infrared Physics & Technology, Vol.55, No.6, pp.513-521, 2012.

[18] Dong, X., Huang, X., and Zheng, Y. “Infrared Dim and Small Target Detecting and Tracking Method Inspired by Human Visual System,” Infrared Physics & Technology, Vol.62, pp.100-109, 2014.

[19] Chen, C. L. P., Li, H., and Wei, Y. “A Local Contrast Method for Small Infrared Target Detection,” IEEE Transactions on Geoscience and Remote Sensing, Vol.52, No.1, pp.574-581, 2014.

[20] Guo, C., Ma, Q., and Zhang, L. “Spatio-Temporal Saliency Detection using Phase Spectrum of Quaternion Fourier Transform,” IEEE Conference on Computer Vision and Pattern Recognition, pp.1-8, 2008.

[21] Han, J., Ma, Y., Huang, J., Mei, X., and Ma, J. “An Infrared Small Target Detecting Algorithm based on Human Visual System,” IEEE Geoscience and Remote Sensing Letters, Vol.13, No.3, pp.452-456, 2016.

[22] Nasiri, M., Mosavi, M. R., and Mirzakuchaki, S. “Infrared Dim Small Target Detection with High Reliability using Saliency Map Fusion,” IET Image Processing, Vol.10, No.7, pp.524-533, 2016.

[23] Nasiri, M., Mosavi, M. R., and Mirzakuchaki, S. “IR Small Target Detection based on Human Visual Attention using Pulsed Discrete Cosine Transform,” IET Image Processing, Vol.11, No.6, pp.397-405, 2017.

[24] Gu, Y. F., Wang, C., Liu, B. X., and Zhang, Y. “A kernel-Based Nonparametric Regression Method for Clutter Removal in Infrared Small-Target Detection Applications,” IEEE Conference on Image and Signal Processing, Vol.37, pp.469-473, 2010.

[25] Boccignone, G., Chianese, A., and Picariello, A. “Small Target Detection using Wavelets,” Proceedings of 4th IEEE Conference on Pattern Recognition, pp.1776-1778, 1998.

[26] Deng, H., Sun, X., Liu, M., Ye, C., and Zhou, X. “Entropy-based Window Selection for Detecting dim and Small Infrared Targets,” Pattern Recognition, Vol.61, pp.66-77, 2017.

[27] Deng, H., Sun, X., Liu, M., Ye, C., and Zhou, X. “Infrared Small-Target Detection using Multiscale Gray Difference Weighted Image Entropy,” IEEE Transactions on Aerospace and Electronic Systems, Vol.52, No.1, pp.60-72, 2016.

[28] Qin, H., Han, J., Yan, X., Li, J., Zhou, H., Zong, J., Wang, B., and Zeng, Q. “Multiscale Random Projection based Background Suppression of Infrared Small Target Image,” Infrared Physics & Technology, Vol.73, pp.255-262, 2015.

[29] He, Y., Li, M., Zhang, J. and An, Q. “Small Infrared Target Detection based on Low-rank and Sparse Representation,” Infrared Physics & Technology, Vol.68, pp.98-109, 2015.

[30] Zhang, H., Zhang, L., Yuan, D., and Chen, H. “Infrared Small Target Detection Based on Local Intensity and Gradient Properties,” Infrared Physics & Technology, vol. 89, pp. 88-96, 2018.

[31] Cui, Y. P., Zheng, S., and Liu, Y. C. “SVM-based Infrared Small Target Detection,” Infrared Laser Engineering, Vol.34, No.6, pp.696-702, 2005.

[32] Kim, S. “Analysis of Small Infrared Target Features and Learning-based False Detection Removal for Infrared Search and Track,” Pattern Analysis and Applications, Vol.17, No.4, pp.883-900, 2014.

[33] Zeng, M., Li, J., and Peng, Z. “The Design of Top-hat Morphological Filter and Application to Infrared Target Detection,” Infrared Physics & Technology, Vol.47, No.2, pp.67-76, 2006.

[34] Bai, X. and Zhou, F. “Infrared Small Target Enhancement and Detection based on Modified Top-Hat Transformations,” Computers and Electrical Engineering, Vol.21, No.9, pp.1193-1201, 2010.

[35] Mohsin, S. M., Javed, M. Y., and Anjum, A. “Face Recognition using Bank of Gabor filters,” IEEE Conference on Emerging Technologies ICET'06, pp.144-150, 2006.

[36] Song, F., Guo, Z., and Mei, D. “Feature Selection using Principal Component Analysis,” IEEE Conference on System Science, Engineering Design and Manufacturing Informatization (ICSEM), Vol.1, pp.27-30, 2010.

[37] Papageorgiou, E. I. “Review Study on Fuzzy Cognitive Maps and Their Applications during the Last Decade,” IEEE Conference on Fuzzy Systems, 2011.

[38] Napoles, G., Espinosa, M. L., Grau, I., Vanhoof, K. and Bello, R. “Fuzzy Cognitive Maps Based Models for Pattern Classification: Advances and Challenges,” Soft Computing Based Optimization and Decision Models, Vol.360, pp.83-98, 2018.

[39] Papageorgiou, E. I., Spyridonos, P. P., Glotsos, D. Th., Stylios, C. D., Ravazoula, P., Nikiforidis, G.N., and Groumpos, P.P. “Brain Tumor Characterization using the Soft Computing,” Applied Soft Computing, Vol.8, No.1, pp.820-828, 2008.

[40] Stach, W., Kurgan, L. A., and Pedrycz, W. “A Divide and Conquer Method for Learning Large Fuzzy Cognitive maps,” Fuzzy Sets and Systems, Vol.161, No.19, pp.2515-2532, 2010.

[41] Oikonomou1, P. and Papageorgiou, E. I. “Particle Swarm Optimization Approach for Fuzzy Cognitive Maps Applied to Autism Classification,” IFIP International Conference on Artificial Intelligence Applications and Innovations, pp.516-526, 2013.