نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکتری مهندسی هوافضا، مجتمع دانشگاهی مکانیک و هوافضا، دانشگاه صنعتی مالک اشتر، اصفهان

2 کارشناس ارشد مهندسی مکانیک، دانشگاه صنعتی اصفهان

چکیده

فناوری موتورهای توربین‌‌گاز دریایی با شتاب روز افزون به سمت افزایش عملکرد و کاهش هزینه‌ها در حال حرکت است. بزرگ‌ترین مانع در جهت پیشرفت این حوزه، مسایل مربوط به خنک‌کاری محفظه احتراق است به نحوی که با بالا رفتن دما، مواد به کار رفته در دیواره ذوب شده یا استحکام خود را از دست می‌دهند و عملا امکان افزایش توان موتور یا زمان کارکرد آن وجود ندارد. یکی از ایده‌های بسیار سودمند برای حل این مشکل، استفاده از محیط متخلخل در مسیر سیال خنک‌کن محفظه احتراق است. مهم‌ترین مزیت تحقیق حاضر، عدم استفاده از فرض‌های ساده‌کننده و نزدیکی بسیار زیاد آن به شرایط عملی از جمله انتخاب هندسه و شرایط مرزی واقعی، استفاده از مدل عدم تعادل گرمایی محلی برای شبیه‌سازی محیط متخلخل و در نظر گرفتن خواص فیزیکی متغیر با دما برای سیال اشاره کرد. تاثیر عوامل مختلف از قبیل جنس سیال، جنس محیط متخلخل و اندازه حفره‌ها بر انتقال حرارت و افت فشار جریان در محدوده وسیعی از عدد رینولدز و شار گرما به طور جامع بررسی گردید. در نهایت مشخص شد استفاده از سیال هیدروژن به عنوان سیال خنک‌کن با محیط متخلخلی از جنس نیکل با اندازه حفره PPI 20 مناسب‌ترین حالت برای خنک‌کاری محفظه احتراق است که در مقایسه با کانال ساده، بیشینه دمای دیواره را در اعداد رینولدز مختلف به طور متوسط در حدود 60 % کاهش می‌دهد. این حالت همراه با افت فشاری در حدود حداکثر kPa 5 می‌باشد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Assessing the Feasibility of Marine Gas Turbine Combustion Chamber Cooling by Porous Media

نویسندگان [English]

  • B Shahriari 1
  • M Ghorbani 2

چکیده [English]

The technology of marine gas turbine is being developed toward higher efficiency and lower cost. The biggest setback to progress is the issues corresponded to cooling of combustion chamber so that as the temperature rises further, the materials melt and it is impossible to increase the engine power or travel time. One of the most useful idea is utilization of porous media in the path of coolant fluid. The main advantage of this study is in using no simplifying assumptions and its significant proximity to practical conditions such as using real geometry and boundary conditions, local thermal non-equilibrium model to model porous medium, and taking into account the variation of physical properties due to fluid's temperature. Influences of various parameters including fluid type, porous media’s material and porous holes sizes in wide ranges of the Reynolds number and heat flux were investigated, comprehensively. It was revealed that using hydrogen as a coolant with insertion of 20 PPI Nickel porous media presents the best condition for cooling of combustion chamber which on average reduce the maximum temperature of walls about 60% for different Reynolds numbers in comparison with the simple conduit. This condition is accompanied by approximately 5 kPa pressure drop.

کلیدواژه‌ها [English]

  • Marine gas turbine
  • Combustion chamber
  • Cooling
  • Porous media

[1] El-Sayed, and Ahmed F., “Aircraft Propulsion and Gas Turbine Engines”, CRC Press, Taylor & Francis Group, 2008.

[2] Earl Logan, Jr., “Handbook of Turbomachinery: Revised and Expanded”, 2nd ed., Marcel Dekker, Inc, 2003.

[3] Walsh, P., and Fletcher, P., “Gas Turbine Performance”, Blackwell, 2nd. ed., 2004.

[4] Doug Woodyard, “Pounder’s Marine Diesel Engines and Gas Turbines”, 9th ed., Elsevier Butterworth-Heinemann, 2009.

[5] Claire Soares, “Gas Turbines:A Handbook of Air, Landand Sea Applications”, Butterworth -Heinemann, 2nd. ed. , 2015.

[6] Dzida, M., “On the Possible Increasing of Efficiency of Ship Power Plant with the System Combined of Marine Diesel Engine, Gas Turbine and Steam Turbine at the Main Engine-Steam Turbine Mode of Cooperation”, Polish Maritime Research, Vol.16, No.1, pp.47-52, 2009.

[7] Ernesto Benini, “Advances in Gas Turbine Technology”, InTech, 2011.

[8] Loftin Jr, K. L., “Quest for Performance, The Evolution of Modern Aircraft”, pp.194-199, Washington, D.C: NASA Scientific and Technical Information Branch, 1985.

[9] Marchi, C. H., Laroca, F., Silva, A. F. C. and Hinckel, J. N., “Numerical Solutions of Flows in Rocket Engine with Regenerative Cooling”, Numerical Heat Transfer, Vol.45, No.7, 2004.

[10] Brockmeyer, J. W., Fortini, A. J., Williams, B. E. and Tuffias, R. H., “High-Efficiency Open-Cell Foam Heat Exchangers for Actively Cooled Propulsion Components”, The 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Pacoima, United States, 1998.

[11] Choi, S. H., Scotti, S. J., Song, K. D. and Ries, H., “Transpiring Cooling of a Scram Jet Engine Combustion Chamber”, NASA Langley Research Center, Hampton, Virginia American Institute of Aeronautics and Astronautics , Inc., 1997.

[12] Greuel, D., Herbertz, A., Haidn, O. J., Ortelt, M. and Hald, H., “Transpiration Cooling Applied to C/C Liners of Cryogenic Liquid Rocket Engines", in The 40th AIAA/ASME/SAE /ASEE Joint Propulsion Conference & Exhibit, Fort Lauderdale, Florida, 2004.

[13] Riccius, J. R., , Greuel, D., Haidn, O. J., and Leicht, T., “Coupled CFD Analysis of the Hot Gas and the Coolant Flow in Effusion Cooled Combustion Chambers”, The 41st AIAA/ASME/ SAE/ASEE Joint Propulsion Conference, Tucson, Arizona, 2005.

[14] Song, K. D., Choi, S. H. and Scotti, S. J., “Transpiration Cooling Experiment for Scramjet Engine Combustion Chamber by High Heat Fluxes”, Journal of Propulsion and Power, Vol.22, No.1, 2006.

[15] Sözen, M. and Davis, P. A., “Transpiration Cooling of a Liquid Rocket Thrust Chamber Wall”, The 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Hatford, United States, 2008.

[16] Langener, T., Wolfersdorf, J. S. and Steelant, J. “Experimental Investigations on Transpiration Cooling for Scramjet Application Using different Coolants”, AIAA Journal, Vol.49, No.7, 2011.

 [17] Avenall, R. J., “Use of Metallic Foams for Heat Transfer Enhancement in the Cooling jacket of a Rocket Propulsion Element”, M.Sc thesis, Department of Mechanical Engineering, University of Florida. 2004.

 [18] Yuan, K., Avenall, R. J., Chung, J. N. and Carroll, B. F., “Enhancement of Thrust Chamber Cooling with Porous Media Inserts”, The 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Tucson, Arizona, 2005

[19] Yuan, K., Ji, Y. and Chung, J. N., “Feasibility Study of Cooling Enhancement with Porous Metal Inserts”, Journal of Thermophysics and Heat Transfer, Vol.22, No.3. 2008

[20] Chung, J. N., Tully, L., Kim, J. H., Jones, G. W. and Watkins, W., “Evaluation of Open Cell Foam Heat Transfer Enhancement for Liquid Rocket Engines”, The 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Sacramento, California. 2006.

[21] Bai, M. and Chung, J. N., “Heat transfer Enhancement in a Cooling Channel with Metal Foam Inserts”, The 43rd AIAA/ASME/SAE/ ASEE Joint Propulsion Conference, Cincinnati, 2007.

[22] Bai, M. and Chung, J. N., “Enhanced Cooling of a Liquid-Fuelded Rocket Thrust Chamber by Metal Foams”, Journal of Propulsion and Power, Vol.28, No.2, pp.23-32, 2012.

[23] Nield, D. A. and Bejan, A., “Convection in Porous Media”, 4th ed., Springer, 2013.

[24] Frohlke, K., Haidn, O. J. and Serbest, E., “New Experimental Results on Transpiration Cooling for Hydrogrn/Oxygen Rocket Combustion Chambers”, Space Propulsion Division, German Aerospace Center DLR, Published by the American Institute of Aeronautics and Astronautics, 1998.

[25] Whitaker, S., “Forced Convection Heat Transfer Correlations for Flow In Pipes, Past Flat Plates, Single Cylinders, Single Spheres, and for Flow In Packed Beds and Tube Bundles”, AICHE Journal, March 1972.

[26] Webb, R. L., “Principles of Enhanced Heat Transfer”, John Wiley, & Sons., , 1994.

[27]Ergun, S., “Fluid Flow Through Packed Columns”, Chemical Engineering progress, Vol.48, pp.89-94, 1952.

[28] Ansys Fluent Theory Guide, Release 14.5, 2012.

[29] Fox, R. W., McDonald, A. T., Pritchard, P. J., “Introduction to Fluid Mechanics”, John Wiley & Sons Inc., New York. 2008.