نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی دریا-هیدرودینامیک و جلوبری دانشگاه صنعتی مالک اشتر، اصفهان

2 استادیار مهندسی مکانیک، دانشگاه صنعتی مالک اشتر، اصفهان

چکیده

ایمنی، یکی از مهمترین مسائل در مواجهه با استفاده‌ی گسترده از هیدروژن و خطر بالای ناشی از نشتِ آن در محیط‌های بسته می‌باشد. وجود گاز هیدروژن در چاه باتری زیردریایی‌ها نیز حادثه ساز است. یکی از راه‌های کاهش این خطر شناسایی رفتار گاز هیدروژن در شرایط مختلف می‌باشد. به همین دلیل، در این مقاله، رفتار گذرای گاز هیدروژن در نشت و پخش در یک محفظه‌ی سیلندریِ بسته، شبیه سازی عددی شده است. کسرهای حجمیِ هیدروژن در طول مدت زمان نشتِ 60s و همینطور تا 100 دقیقه پس از توقف نشت، استخراج و در زمان‌های 2، 50 و 100 دقیقه‌ای با نتایج آزمایشگاهی مقایسه شدند. بعلاوه، بررسی‌های عددی برای پارامتر موقعیت نشت انجام شد. مطالعات نشان دادند مناطق پرخطر از نظر قابلیت اشتعال به سرعت در قسمت بالای محفظه شکل می‌گیرند و همچنین در مطالعه‌ی تأثیر ارتفاع منطقه‌ی خطر نیز این مطلب دریافت شد که با افزایش ارتفاع محل قرارگیریِ حفره‌ی نشت، مناطق خطر وسیع‌تر گشته و ماندگاری آن نیز بیشتر می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Numerical investigation of the hydrogen leakage location on the hydrogen distribution in a closed chamber

نویسندگان [English]

  • M Afghan Haji Abbas 1
  • S Kheradmand 2

چکیده [English]

Security is one of the most important problems facing the wider use of hydrogen and the increased risk of release into the closed environments. The existence of hydrogen gas in submarine's battery well is also accidental. One way to reduce this risk is to identify the behavior of hydrogen in different situations. For this reason, In this paper, transient behavior of the hydrogen gas in leakage and diffusion in a closed cylinder chamber is simulated numerically. Hydrogen Volume Fraction (HVF) extracted during 60 s leakage and up to 100 minutes after stopping the leak and compared with experimental data of the Shebeko work , in 2 , 50 and 100 minutes after stopping the leak. Moreover, location of the leakage parameter, investigated numerically. Studies have shown that high-risk regions of flammability are formed in top of the room, quickly and with an increase in height of release hole, hazard regions has become broader and becomes more lasting.

کلیدواژه‌ها [English]

  • Hydrogen
  • Battery Well
  • Leakage Location
  • Flammability
  • numerical simulation

[1] Dunn, S., “Hydrogen Futures: Toward a Sustainable Energy System”, International Journal of Hydrogen Energy. Vol.27, No.3, pp.235-264, 2002.

[2] Dahoe, A., and Molkov, V., “On the Development of an International Curriculum on Hydrogen Safety Engineering and its Implementation into Educational Programs”, International Journal of Hydrogen Energy. Vol.32, No.8, pp.1113-1120, 2007.

[3] Larminie, J., Dicks, A., and McDonald, M. S., “Fuel Cell Systems Explained”, Wiley New York, 2003.

[4] Burcher, R., and Rydill, L.J., “Concepts in Submarine Design”, Cambridge University Press, 1995.

[5] Baines, W., and Turner, J., “Turbulent Buoyant Convection from a Source in a Confined Region”, Journal of Fluid Mechanics, Vol.37, No.1, pp.51-80, 1969.

[6] Cleaver, R., Marshal, M., and Linden, P., “The Build-up of Concentration within a Single Enclosed Volume Following a Release of Natural Gas”, Journal of Hazardous Materials, Vol.36, No.3, pp.209-226, 1994.

[7] Vudumu, S.K., and Koylu, U.O., “Detailed Simulations of the Transient Hydrogen Mixing, Leakage and Flammability in Air in Simple Geometries”, International Journal of Hydrogen Energy, Vol.34, No.6, pp.2824-2833, 2009.

 [8]Lacome, J.M., Jamois, D., Perrette, L., and Proust, C., “Large-scale Hydrogen Release in an Isothermal Confined Area”, International Journal of Hydrogen Energy, Vol.36, No.3, pp.2302-2312, 2011.

[9] Venetsanos, A., Papanikolaou, E., Delichatsios, M., Garcia, J. , Hansen, O., Heitsch, M., Huser, A., Jahn, W., Jordan , T., and Lacome, J.M. “An Inter-Comparison Exercise on the Capabilities of CFD Models to Predict the Short and Long Term Distribution and Mixing of Hydrogen in a Garage”, International Journal of Hydrogen Energy, Vol.34, No.14, pp.5912-5923, 2009.

[10] Zhang, J., Delichatsios, M., and Venetsanos A. “Numerical Studies of Dispersion and Flammable Volume of Hydrogen in Enclosures”, International Journal of Hydrogen Energy, Vol. 35, No.12, pp.6431-6437, 2010.

[11]Cariteau, B., and Tkatschenko, I., “Experimental Study of the Effects of Vent Geometry on the Dispersion of a Buoyant Gas in a Small Enclosure”, International Journal of Hydrogen Energy, Vol.38, No.19, pp.8030-8038, 2013.

[12]Giannissi, S., Shentsov, V., Melideo, D., Cariteau, B., Baraldi, D., Venetsanos, A., and Molkov, V., “CFD Benchmark on Hydrogen Release and Dispersion in Confined, Naturally Ventilated Space with one Vent”, International Journal of Hydrogen Energy, Vol.40, No.5, pp.2415-2429, 2015.

[13]Swain, M.R., Grilliot, E.S., and Swain, M.N., “Risks Incurred by Hydrogen Escaping from Containers and Conduits”, Proceedings of the 1998 U.S. DOE hydrogen program review, NREL/CP-570-25315, 1998.

[14] Swain, M. R., Grilliot, E.S., Swain, M.N., “Dispersion of Hydrogen Clouds”, Proceedings of the 2000 DOE Hydrogen Pr Re, riew, NBEI/CP-570-28890, 2000.

[15]Gallegoa, E., Migoyaa, E., Martín-Valdepeñasa, J.M., Crespoa, A., Garcíaa, J., Venetsanos, A., Papanikolaoub, E., Kumarc, S., Studerd, E., Dagbae, Y., Jordanf, T., Jahng, W., HZiseth, S. Makarovi, D., and Piechnaj, J., “An Inter-comparison Exercise on the Capabilities of CFD Models to Predict Distribution and Mixing of H2 in a Closed Vessel”, International Journal of Hydrogen Energy, Vol.32, No.14 ,pp.2235-2245, 2007.

 [16] Launder, B. E., Spalding, D. B. “Lectures in Mathematical Models of Turbulence”, 1972.

[17]Yan, L., ZHAO, P.F., Qiang, W., and CHEN, Z.H., “URANS Computation of Cavitating Flows around Skewed Propellers”, Journal of Hydrodynamics, Ser. B, Vol.24, No.3, pp.339-346, 2012.

[18]Kim, S., Choi, C., Kim, J., Park, J., and Baek, J., “Tip Clearance Effects on Cavitation Evolution and Head Breakdown in Turbopump Inducer”, Journal of Propulsion and Power, Vol.29, No.6, pp.1357-1366, 2013.

[19]Launder, B. E., and Spalding, D., “The Numerical Computation of Turbulent Flows”, Computer Methods in Applied Mechanics and Engineering, Vol.3, No.2, pp.269-289, 1974.

[20]Sharma, K.R., “Principles of Mass Transfe”, PHI Learning Pvt. Ltd., 2007.