نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار مهندسی مکانیک، دانشکده مهندسی، دانشگاه مازندران

2 دانشجوی کارشناسی ارشد مکانیک دانشگاه آزاد اسلامی واحد نور

چکیده

 انتقال حرارت نقش مهمی را در صنعت و نیروگاه‌ها ایفا می‌کند؛ لذا در پژوهش حاضر با جایگزینی نانو سیال با سیال پایه روغن، انتقال حرارت در کلکتور خورشیدی سهموی خطی شبیه سازی عددی خواهد شد. از این رو، اثر غلظت ذرات اکسیدمس در روغن سیلیکون بر نرخ انتقال حرارت از لوله جاذب بررسی می شود. غلظت‏های گوناگون نانوذرات (1% ، 3%و 5% در حجم) در دمای عملکردی 500 درجه کلوین استفاده گردید. شار حرارتی در جهت محیطی با استفاده از روش ردیابی اشعه مونت کارلو و معادلات سه‎بعدی ناویر استوکس جرم، مومنتوم و انرژی با استفاده از نرم‏افزار تجاری فلوئنت، و استفاده از گسسته‏سازی مرتبه دوم برای ترم های جابجایی و پخش، و برای کوپل کردن سرعت- فشار روش سیمپل استفاده شد. نتایج نشان می‏دهد که ضریب انتقال حرارت جابجایی به صورت نمایی با حرکت در طول لوله و توسعه یافتگی حرارتی و هیدرودینامیکی سیال، کاهش، و ضریب انتقال حرارت جابجایی با افزایش غلظت حجمی نانوسیال افزایش می‏یابد. با افزایش غلظت حجمی نانوسیال، ضریب هدایت حرارتی و گرادیان دمایی سیال افزایش می‏یابد که در نهایت منجر به افزایش ضریب انتقال حرارت جابجایی نانوسیال می‏گردد. کانتور دمایی بر روی سطح خارجی کلکتور در زاویه صفر درجه در ناحیه توسعه نیافته در غلظت های حجمی گوناگون، تفاوت چندانی نمی کند اما در ناحیه توسعه یافته با افزایش غلظت حجمی به میزان 5% دما بر روی سطح خارجی کلکتور به میزان 3 درجه کلوین کاهش می یابد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Numerical Investigation of the Thermal Performance Linear Parabolic Solar Collector Absorber Tubes Using Nanofluids Copper Oxide - Heating Oil

نویسندگان [English]

  • N Kordani 1
  • M Paknejad 2

2 Nour Azad University

چکیده [English]

In this study, the effect of concentration of oxides in silicone oil on the heat transfer rate of adsorbent tube was investigated and various concentrations of nanoparticles (1%, 3% and 5% in volume) were used at a working temperature of 500 K Kelvin. Also, the thermal flux in the tangential direction using the Monte Carlo rays tracking method and three-dimensional Navier Stokes equations for mass, momentum, and energy using the flute utility, and the use of second-order discretization for the transfer and disassembly courses, and for coupling speeds, simpel method was used. The results show that the heat transfer coefficient of displacement is exponentially increased by moving along the tube, and the thermal and hydrodynamic evolution of the fluid decreases, and the transfer heat transfer coefficient increases with increasing nanosilver concentration. This indicates that increasing the volumetric concentration of nanofluid, the thermal conductivity coefficient and the fluid gradient increases, which ultimately leads to an increase in the heat transfer coefficient of the nanofluid.

کلیدواژه‌ها [English]

  • Parabolic Trough Collector
  • Non-uniform Heat Flux
  • Monte Carlo
  • Nanofluid

[1] Yousefi, T., et al., An Experimental Investigation on the Effect of Al2O3–H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors. Renewable Energy, 2012. 39(1): p. 293-298.

[2] Yousefi, T., et al., An Experimental Investigation on the Effect of MWCNT- H2O Nanofluid on the Efficiency of Flat-Plate Solar Collectors. Experimental Thermal and Fluid Science, 2012. 39(0 :)p. 207-212.

[3] Taylor RA., et al., Applicability of Nanofluids in High Flux Solar Collectors.Renewable and Sustainable Energy 2011. 3(2).

[4] Khullar, V., Tyagi, H., Phelan, PE., Otanicar, TP., Singh, H., Taylor, RA., Solar Energy Harvesting Using Nanofluids-Based Concentrating Solar Collector. Nanotechnology in Engineering and Medicine, 2013, doi:10.1115/1.4007387.

[5]Kasaeian,A.B., Sokhansefat ,T., Numerical Study of Heat Transfer Enhancement by using Al2O3/Synthetic Oil Nanofluid in a Parabolic TroughCollector Tube, in World Academy of Science, Engineering and Technology. 2012: Rome. p. 1154-1159.

[6] Emir, M., R. Mehdaoui, R., Mojtabi, A.,Numerical Simulation of Cooling a Solar Cell by Forced Convection in the Presence of a Nanofluid.EnergyProcedia, 2012. 18:p. 594–603

[7] Lu, L., Liu, Z., Xiao, H., Thermal Performance of An Open Thermosyphon UsingNanofluids for High Temperature Evacuated Tubular Solar Collectors. Solar Energy Engineering, 2011. 85: p. 379-387.

[8] Otanicar, TP., Golden, JS. Comparative Environmental and Economic Analysis of Conventional and Nanofluid Solar Hot Water Technologies. Environmental Science and Technology, 2009. 43:p.6082–7.

[9] Dudley, V.E., et al., Segs Ls2 Solar Collector-Test Results 1994, sandianatinal laboratories: SANDIA.

[10] Shalchi-Tabrizi, A., &Seyf, H. R. Analysis of entropy generation and convective heat transfer of Al2O3nanofluid flow in a tangential micro heat sink. International Journal of Heat and Mass Transfer, 2012. 55(15), 4366-4375.

[11] Ghebleh, Nader and EzatollahAskariAsliArdeh, studying the parameters on the type of solar absorbers, the second international conference on new ideas in agriculture, environment and tourism, Ardabil, Institute of Environmental sighted supporters’ ideal environment, 2016. (in persian)

[12] Falah, Arastu and M Khalilian, reviews the performance of the heat pipe in order to improve its efficiency concentrator solar collectors, the first International Congress of Earth, space and clean energy, Ardebil, Ardebil University researcher, 2015. (in persian)

[13] Soltanpurkhameneh, Morteza, Mehdi Pestehei and Mohammad Soltanpurkhameneh, to studied heat transfer in a linear parabolic solar collectors, Sixth International Conference on heating, cooling and ventilation systems, Tehran, Research Institute for Housing and Urban Development, 2015. (in persian)

[14] He, Y.L., et al., A MCRT and FVM Coupled Simulation Method for Energy Conversion Process in Parabolic Trough Solar Collector. Renewable Energy, 2011. 36(3): p. 976-985.

[15] Vajjha, R. S., Das, D. K., & Kulkarni, D. P., Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids. International Journal of Heat and Mass Transfer, 2010. 53(21): p. 4607-4618.

[16] Saeedinia, M., Akhavan-Behabadi, M. A., &Razi, P. (2012). Thermal and rheological characteristics of CuO–Base oil nanofluid flow inside a circular tube. International Communications in Heat and Mass Transfer, 39(1), 152-159.

[17] K.Khanafer, K.Vafai, M.Lightstone, "Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids" International Journal of Heat and Mass Transfer, Vol.46, No. 19, PP.3639-3653, 2003.

[18] F.M.White, I.Corfield, "Viscous fluid flow (Vol. 2)" New York: McGraw-Hill, 1991.

 

[19] Esmaeilzadeh, E., Almohammadi, H., Vatan, S. N., &Omrani, A. N. (2013). Experimental investigation of hydrodynamics and heat transfer characteristics of γ-Al2O3/water under laminar flow inside a horizontal tube. International Journal of Thermal Sciences, 63, 31-37.

 [20]W. Yu, S. Choi, The role of interfacial layers in the enhanced thermal conductivity of nano fluids: arenovated Maxwell model, Journal of Nanoparticle Research, Vol.5, No.1-2, pp.167-171,, 2003.

[21]B. C. Pak, Y. I. Cho, Hydro dynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles, Experimental Heat Transfer an International Journal, Vol. 11, No. 2, pp. 151-170, 1998.

 [22] Maxwell, J.C., A Treatise on Electricity and Magnetism Vol. 1, UK: Oxford.

[23] Yu, W., and Choi, S. U. S., The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A Renovated Maxwell Model. J. Nanopart. Res, 2003. 5(1): p. 161-171.

[24] Schwartz, L.M., Garboczi, E. J., and Bentz, D. P., Interfacial Transport in Porous Media: Application to DC Electrical Conductivity of Mortars. J. Appl. Phys, 1995. 78(10): p. 5898-5908.

[25] Yu, W. and Choi, S.U.S., The Role of Interfacial Layers in the Enhanced Thermal Conductivity of Nanofluids: A renovated Hamilton–Crosser Model. Journal of Nanoparticle Research, 2004. 6(4) :p. 355-361.

[26] Hamilton, R.L., and Crosser, O. K., Thermal Conductivity of Heterogeneous Two-Component Systems. Ind. Eng. Chem. Fund, 1962. 1(2): p. 187-191.

[27] Li, Y., Qu, W., and Feng, J., Temperature Dependence of Thermal Conductivity of Nanofluids .Chinese Phys. Lett, 2008. 25(9): p. 3319-3322.

[28] Pak, B.C., and Cho, Y. I., Hydrodynamic and Heat Transfer Study of Dispersed Fluids with Submicron Metallic Oxide Particles. Exp. Heat Transfer, 1998. 11(2): p. 151-170.

[29] Xuan, Y., and Roetzel, W , Conceptions for Heat Transfer Correlation of Nanofluids. Int. J. Heat Mass Tran, 2000. 43(19): p. 3701-3707.

[30] Einstein, A., A New Determination of the Molecular Dimensions. Ann. Phys, 1906. 324(2): p. 289-306.

[31] Batchelor, G.K., The Effect of Brownian Motion on the Bulk Stress in a Suspension of Spherical Particles. J. Fluid Mech, 1977. 83(1): p. 97-117.

[32] Nguyen, C., Desgranges, F., Roy, G., Galanis, N., Maré, T., Boucher, S., and AngueMintsa, H., Temperature and Particle-Size Dependent Viscosity Data for Water-Based Nanofluids - Hysteresis Phenomenon. Int. J. Heat Fluid Fl, 2007. 28(6): p. 1492-1506.

[33] Tseng, W.J., and Lin, K., Rheology and Colloidal Structure of Aqueous TiO2 Nanoparticle Suspensions. Mater. Sci. Eng. A, 2033. 355(2): p.102-181.

[34] Maïga, S.E.B., Nguyen, C. T., Galanis, N., and Roy, G., Heat Transfer Behaviours of Nanofluids in a Uniformly Heated Tube. Superlattices and Microstructures, 2004. 35(3-6): p. 543-557.

[35] Kulkarni, D.P., Das, D. K., and Chukwu, G. A., Temperature Dependent Rheological            Property of Copper Oxide Nanoparticles Suspension (Nanofluid). J. Nanosci. Nanotechno, 2006. 6: p. 1150-1154.

[36] Kasaeian, A.B., et al., Convective Heat Transfer Modeling of AG Nanofluid Using Different Theories. IIUM Engineering Journal, 2912. 14.

[37] Ben Mansour, R., Galanis, N. and Nguyen, C.T., Experimental Study of Mixed Convection with Water–Al2O3 Nanofluid in Inclined Tube with Uniform Wall Heat Flux. International Journal of Thermal Sciences, 2011. 50(3): p. 403-410.

[38] Chen, H., Ding, Y., Heat Transfer and Rheological Behaviour of Nanofluids– A Review. Springer-Verlag Berlin Heidelberg, 2009: p. 135-177.

[39] Saeedinia, M., Akhavan-Behabadi, M. A., &Razi, P. (2012). Thermal and rheological characteristics of CuO–Base oil nanofluid flow inside a circular tube. International Communications in Heat and Mass Transfer, 39(1), 152-159.

[40] K.Khanafer, K.Vafai, M.Lightstone, "Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids" International Journal of Heat and Mass Transfer, Vol.46, No. 19, PP.3639-3653, 2003.

[41] F.M.White, I.Corfield, "Viscous fluid flow (Vol. 2)" New York: McGraw-Hill, 1991.