نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار مهندسی مکانیک دانشگاه حضرت آیت الله بروجردی (ره)

2 دانشجوی کارشناسی مهندسی مکانیک، دانشگاه آیت الله العظمی بروجردی

چکیده

در تحقیق حاضر، به مطالعه و بررسی تاثیرات افزودن جداگانه گازهای نیتروژن و هیدروژن بر عملکرد و میزان آلاینده های تولیدی در یک موتور اشتعال تراکمی پاشش مستقیم سرعت بالا پرداخته شده است. برای این منظور، ابتدا داده های حاصل از شبیه سازی با مقادیر تجربی مورد مقایسه قرار گرفته است و تطابق مناسبی جهت پیش بینی مقادیر فشار داخل سیلندر، آهنگ رهایی گرما و آلاینده های اکسیدهای ازت، دوده و منوااکسیدکربن بدست آمده است. در مطالعه حاضر، از الگوی اشتعال گسترش یافته سه ناحیه-ایی شعله یکنواخت برای پیش بینی فرآیند احتراق بهره برده شده است. در فاز دوم تحقیق، تاثیرات جداگانه افزودن گازهای نیتروژن و هیدروژن بر اساس درصد حجمی در بازه 2 تا 8 درصد با گام‌های 2 درصدی مورد مطالعه و بررسی قرار گرفته است. نتایج این تحقیق نشان داده است که با افزودن گاز هیدروژن، میزان تولید آلاینده های مونواکسیدکربن و دوده کاهش یافته است در حالی که افزودن نیتروژن به دلیل کاهش اکسیژن در دسترس در طول فرآیند احتراق، سبب افزایش این آلاینده ها در مقایسه با حالت پایه موتور (دیزل خالص) شده است.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Study the Effects of Separate Nitrogen and Hydrogen Addition on Engine Performance and The amount of Pollutant Emissions in a High Speed Direct Injection Diesel Engine

نویسندگان [English]

  • R Mobasheri 1
  • M Seddiq 2

2 Department of Mechanical Engineering, Ayatollah Borujerdi University, Borujerd, Iran

چکیده [English]

In current research, the effects of separate Nitrogen and Hydrogen addition on engine performance and the amount of pollutants emissions have been investigated in a High Speed Direct Injection (HSDI) Diesel engine. For this purpose, the numerical results have been firstly compared to experimental data and good agreements have been to estimate the in-cylinder pressure, rate of heat release and the amount of NOx, soot and Co emissions. In current investigation, the ECFM-3z model has been applied to analyze the combustion process. In second phase of this research, the effects of separate Nitrogen and hydrogen addition in a range of 2-8 percent (based on 2% interval) have been studied. The results show that by applying the Hydrogen as a separate additive, the amount of CO and soot have been decreased by 54% and 89%, respectively. while using the separate Nitrogen addition causes the increase of these emissions by 86% and 146% respectively due to decreasing the available oxygen in combustion process compared to the neat diesel baseline engine case.

کلیدواژه‌ها [English]

  • Diesel engine
  • Combustion Process
  • Pollutants Emissions
  • Hydrogen and Nitrogen Additive

[1]  Lata, D. B., & Misra, A. (2010). Theoretical and experimental investigations on the performance of dual fuel diesel engine with hydrogen and LPG as secondary fuels. International journal of hydrogen energy, 35(21), 11918-11931.

[2]   Singh, R., & Maji, S. (2012). Dual fueling of a twin-cylinder compression ignition engine with diesel and CNG. Journal of engineering and applied sciences, 7, 90-99.

[3]   Chokri, B., Ridha, E., Rachid, S., & Jamel, B. (2012). Experimental study of a diesel engine performance running on waste vegetable oil biodiesel blend. Journal of energy resources technology, 134(3), 032202.

[4]    Christodoulou, F., Giannakakis, P., & Kalfas, A. I. (2011). Performance benefits of a portable hybrid micro-gas turbine power system for automotive applications. Journal of Engineering for Gas Turbines and Power, 133(2), 022301.

[5]   Karagöz, Y., Güler, İ., Sandalcı, T., Yüksek, L., & Dalkılıç, A. S. (2016). Effect of hydrogen enrichment on combustion characteristics, emissions and performance of a diesel engine. International Journal of Hydrogen Energy, 41(1), 656-665.

[6]   McWilliam L, Megaritis T, Zhao H. Experimental investigation of the effects of combined hydrogen and diesel combustion on the emissions of a HSDI diesel engine 2008. SAE paper 2008-01-1787.

[7]   Talibi, M., Hellier, P., Balachandran, R., & Ladommatos, N. (2014). Effect of hydrogen-diesel fuel co-combustion on exhaust emissions with verification using an in–cylinder gas sampling technique. International journal of hydrogen energy, 39(27), 15088-15102.

[8]   Deb, M., Sastry, G. R. K., Bose, P. K., & Banerjee, R. (2015). An experimental study on combustion, performance and emission analysis of a single cylinder, 4-stroke DI-diesel engine using hydrogen in dual fuel mode of operation. International journal of hydrogen energy, 40(27), 8586-8598.

[9]   Sandalcı, T., & Karagöz, Y. (2014). Experimental investigation of the combustion characteristics, emissions and performance of hydrogen port fuel injection in a diesel engine. International journal of hydrogen energy, 39(32), 18480-18489.

[10]  Cho Y, Song S, Chun KM. H2 effects on diesel combustion and emissions with an LPL-EGR system. Int J Hydrogen Energy 2013; 38:9897-906.

[11]  Ajhar, M., Follmann, M., Matthias, C., & Melin, T. (2008). Membranes producing nitrogen-enriched combustion air in diesel engines: Assessment via dimensionless numbers. Journal of Membrane Science, 323(1), 105-112.

[12]  Poola, R. B., Longman, D. E., Anderson, J. L., Stork, K. C., Sekar, R., Callaghan, K., ... & Bell, R. (2000). Membrane-based nitrogen-enriched air for NOx reduction in light-duty diesel engines (No. 2000-01-0228). SAE Technical Paper.

[13]  Li, T., Izumi, H., Shudo, T., Ogawa, H., & Okabe, Y. (2007). Characterization of low temperature diesel combustion with various dilution gases (No. 2007-01-0126). SAE Technical Paper.

[14]  Mobasheri, R., Peng, Z., & Mirsalim, S. M. (2012). Analysis the effect of advanced injection strategies on engine performance and pollutant emissions in a heavy duty DI-diesel engine by CFD modeling. International Journal of Heat and Fluid Flow, 33(1), 59-69.

[15]  Trueba, A., Barbeau, B., Pajot, O., and Mokaddem, K., "Pilot Injection Timing Effect on the Main Injection Development and combustion in a DI Diesel Engine," SAE Technical Paper 2002-01-0501, 2002, doi: 10.4271/2002-01-0501.

[16]  Joonho Jeon, Sungwook Park, Effects of pilot injection strategies on the flame temperature and soot distributions in an optical CI engine fueled with biodiesel and conventional diesel. Appl Energy 2015.09.075. Doi: 10. 1016.

[17]  d’Ambrosio, S., & Ferrari, A. (2015). Potential of double pilot injection strategies optimized with the design of experiments procedure to improve diesel engine emissions and performance. Applied Energy, 155, 918-932.

[18]  Lin, Z., & Su, W. (2003). A study on the determination of the amount of pilot injection and rich and lean boundaries of the pre-mixed CNG/air mixture for a CNG/diesel dual-fuel engine (No. 2003-01-0765). SAE Technical Paper.

[19]  Mobasheri, R. and Peng, Z., "Investigation of Pilot and Multiple Injection Parameters on Mixture Formation and Combustion Characteristics in a Heavy Duty DI-Diesel Engine," SAE Technical Paper 2012-01-0142, 2012, doi:10.4271/2012-01-0142.

[20]  Fire, A. V. L. (2014.1). Users Guide-ICE Physics & Chemistry.

[21]  Colin, O., Benkenida, A., 2004. The 3-zones extended coherent flame model (ECFM3Z) for computing premixed/diffusion combustion. Oil Gas Sci. Technol. – Rev. IFP 59 (6), 593–609.

[22]  Hélie, J., Trouvé, A., 2000. A modified coherent flame model to describe turbulent flame propagation in mixtures with variable composition. Proc. Combust. Inst. 28, 193–201.

[23]  K. Hanjalic, M. Popovac, M. Hadziabdic, A robust near-wall elliptic-relaxation Eddy-viscosity turbulence model for CFD, Int. J. Heat and Fluid Flow, 2004, 25, 6, 1047–1051.

[24]  Mixture Formation in Internal Combustion Engines. (n.d.). Heat, Mass Transfer Mixture Formation in internal Combustion Engine, 5-46. Doi: 10.1007/3-540-308369_2.

[25]  Su, T.F., Patterson, M.A., Reitz, R.D. and Farrell, P.V. “Experimental and Numerical Studies of High Pressure Multiple Injection Sprays”, SAE 960861, 1996.

[26]  Künsberg-Sarre, C. and Tatschl, R. “Spray Modeling / Atomisation - Current Status of Break-up Models”, IMECHE-Seminar, December 15-16, 1998, The Lawn, Lincoln, UK.

[27]  Nordin, N. “Complex Chemistry Modeling of Diesel Spray Combustion”, PhD Thesis, Chalmers University of Technology, 2001.

[28]  O'Rourke, P.J. and Bracco, F.V. "Modeling of Drop Interactions in Thick Sprays and a Comparison with Experiments", IMECHE, 1980.

[29]  O’Rourke, P.J. and Amsden, A.A. “A Spray/Wall Interaction Submodel for the KIVA-3 Wall Film Model”, SAE Paper 2000-01-0271.

[30]  Arcoumanis C, Gavaises M, French B (1997) Effect of Fuel Injection Process on theStructure of Diesel Sprays. SAE paper 970799.

[31]  Omidvarborna; et al. "NOx emissions from low-temperature combustion of biodiesel made of various feedstocks and blends". Fuel Processing Technology 140: 113–118. doi:10.1016/j.fuproc.2015.08.031.

[32]  Omidvarborna; et al. "Recent studies on soot modeling for diesel combustion". Renewable and Sustainable Energy Reviews 48: 635–647. doi:10.1016/j.rser.2015.04.019.

[33]  Hioyasu, H., Nishida, K., 1989. Simplified Three Dimensional Modeling of MixtureFormation and Combustion in a DI Diesel Engine. SAE Paper 890269.

[34]  Christodoulou, F. (2014). Hydrogen, nitrogen and syngas enriched diesel combustion (Doctoral dissertation).