نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه کامپیوتر ، واحد فومن و شفت، دانشگاه آزاد اسلامی، فومن، ایران

2 قطب علمی کنترل و پردازش هوشمند، دانشکده مهندسی برق و کامپیوتر، پردیس دانشکده های فنی دانشگاه تهران

3 گروه مهندسی پزشکی واحد علوم و تحقیقات تهران، دانشگاه آزاد اسلامی، تهران، ایران

4 مرکز تحقیقات بیمارستان روزبه، دانشگاه علوم پزشکی تهران، تهران، ایران

5 دانشکده مهندسی برق، گروه کنترل، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

بیماری غواصان عارضه ایست که بدن و مغز انسان را با اختلالاتی روبرو می‌کند. با پردازش سیگنال‌های الکتروانسفالوگرافی غواصان، می‌توان اطلاعاتی را در رابطه با اختلالات نوروفیزیولوژیک آنها استخراج کرد و نواحی مغزی دچار عارضه را به‌صورت دقیق مشخص نمود. در این مقاله با استفاده از ویژگی‌های استخراج شده از سیگنال‌های ثبت شده غواصان و افراد غیر غواص که شامل آنتروپی و انرژی است، مدلی مبتنی بر کارکرد مغز این افراد ارائه خواهد شد که قادر به نمایش سازماندهی و اتصالات نواحی مغزی آنها است. این مدل با استفاده از شبکه‌های عصبی سلولی طراحی شده است و کارکرد مغز را نشان می‌دهد. نتایج به‌دست آمده نشان می‌دهد که در اتصالات درون ناحیه‌ای برخی نواحی مغز غواصان شامل T7، T8، O1 وO2 (p < 0.05)، نسبت به افراد غیر غواص تفاوت‌هایی وجود دارد اما ارتباطات کاملاً طبیعی بین کلیه نواحی مشاهده می‌شود.

کلیدواژه‌ها

عنوان مقاله [English]

Modelling the Connections of Brain Regions for Detecting the Brain abnormalities due to diving Based on Electroencephalography

نویسندگان [English]

  • E Askari 1
  • S. K Setarehdan 2
  • A Sheikhani 3
  • M Mohammadi 4
  • M Teshnehlab 5

1 Department of computer engineering, Fouman and shaft branch, Fouman, Iran

2 Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran

3 Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran

4 Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Science, Tehran, Iran

5 Department of Control Engineering, K. N. Toosi University of Technology, Tehran, Iran

چکیده [English]

Decompression sickness is a disorder that human body and brain suffers from it. By processing electroencephalography signals, some information about neurophysiologic disorders can be extracted and suffered brain regions clearly will be identified. In this paper by using extracted features including entropy and energy of common people and divers' registered signals, a model based on brain function will be presented that is able to display the organization and brain regions connections. This model is designed by cell neural networks and shows the brain function. The results show that in intra-region connections of some regions of divers' including T7, T8, O1 and O2, )P < 0.05 (there are some differences in comparison with common people but the connections between different regions are normal.

کلیدواژه‌ها [English]

  • Electroencephalography
  • Cellular neural network
  • Emotiv Epoch
  • Diving

[1] Rosinska, J. Lukasik, M. Kozubski, W. “Neurological Complications of Underwater Diving”, Neurologiai Neurochirurgia Polska. Vol.44, pp.45-51, 2015.

[2] Brylske, A. “The Gas Laws, A Guide for the Mathematically Challenged”, Dive Train. Vol.11, pp.26–34, 1997.

[3] Dutka, A. J. Francis, T. J. “Pathophysiology of Decompression Sickness”, Bove and Davis Diving Medicine. 3rd ed. Philadelphia: W.B. Saunders, 1997.

[4] Gao, G. Xie, L. Wu, D. Sun, Q. Yang, Y. Guan, J. “The Relevance of Magnetic Resonance Imaging in Spinal Cord Decompression Sickness: a Survey of Seven Cases”, Undersea Hyperb Med. Vol.41, pp.105-109, 2014.

[5] Gempp, E. Louge, P. De Maistre, S. Emile, L. Blatteau, J. E. “Neuron-Specific Enolase and S100B Protein Levels in Recreational Scuba Divers with Neurological Decompression Sickness”, Diving Hyperb Med, Vol.44, pp.26-39, 2014.

[6] Talpalar, AE. “High Pressure Neurological Syndrome”, Rev Neurol. Vol.45, pp.631-636, 2007.

[7] Newton, HB. Padilla, W. Burkart, J. Pearl, DK. “Neurological Manifestations of Decompression Illness in Recreational Divers the Cozumel, Experience”, Undersea Hyperb Med. Vol.34, pp.349-57, 2007.

[8] Brock, J. Brown, C. C. Boucher, J. Rippon, G. “The Temporal Binding Deficit Hypothesis of Autism”, Developmental Psychopathology. Vol.14, pp.209-224, 2002.

[9] Barttfeld, P. Wicker, B. Cukier, S. Navarta, S. Lew, S. Sigman, M. “A Big-World Network in ASD: Dynamical Connectivity Analysis Reflects a Deficit in Long-Range Connections and an Excess of Short-Range Connections”, Neuropsychologia. Vol.49, pp.254-263, 2010.

[10] Singh, M. Singh, M. Gangwar, S. “Feature Extraction from EEG for Emotion Classification”, International Journal of Information Technology and Knowledge Management. Vol.44, pp.6-10, 2013.

[11] Mason, R. A. Williams, D. L. Kana, R. K. Minshew, N. Just, M. "A Theory of Mind Disruption and Recruitment of the Right Hemisphere During Narrative Comprehension in Autism”, Neuropsychologia. Vol.46, pp.269-80, 2008.

[12] Kennedy, D. P. Courchesne, E. “The Intrinsic Functional Organization of the Brain is Altered in Autism”, NeuroImage. Vol.39, pp.1877-1885, 2008.

[13] Sheikhani, A., Behnam, H., Mohammadi, M. R., Noroozian, M., “Detection of Abnormalities for Diagnosing of Children with Autism Disordersusing of Quantitative Electroencephalography Analysis”, Journal of Med System, Vol.33, pp.957-963, 2010.

[14] Yu, J. H. Sim, K. B. “Classification of Color Imagination using Emotiv EPOC and Event-Related Potential in Electro-encephalogram”, Optik, Vol.127, pp.9711-9718, 2016.

[15] Liu, X. Jiang, T. Cao, F. Wan, P. U. Mak, P. I. Vai, M. “Implementation of SSVEP Based BCI with Emotiv EPOC”, IEEE International Conference on Virtual Environments Human-Computer Interfaces and Measurement Systems (VECIMS):IEEE. pp.34-37, 2012.

[16] Nunez, P L. Srinvasan, R. “Electric Fields of the Brain”, 2nd edition. New York, 2006.

[17] Gonzalez, P. A. Herraez, M. A. Ramzan, N, Fusing Highly Dimensional Energy and Connectivity Features to Identify Affective States from EEG Signals”, Neurocomputing. Vol.244, pp.81-89, 2017.

[18] Das, A. B. HBhuiyan, M. I. “Discrimination and Classification of Focal and Non-Focal EEG Signals using Entropy-based Features in the EMD-DWT Domain”, Biomedical Signal Processing and Control, Vol.29, pp.11-21, 2016.

[19]Bana, J. C. Changb, C. H. “When are Two Multi-Layer Cellular Neural Networks the Same?”, Neural Networks. Vol.63, pp.12-19, 2016.

[20] Marco, G. Tamas, R. Leon, O. C. Pier Paolo, C. “CNN Dynamics Represents a Broader Class than PDEs”, International Journal of Bifurcation and Chaos. Vol.12, pp.2051-2068, 2002.

[21] Chua, L. Yang, L. “Cellular Neural Networks: Theory”, IEEE Transaction on Circuits and Systems. pp.1257-1272, 1988.

[22] Chua, L O. Roska, T. “The CNN Paradigm. IEEE Transactions on Circuits and Systems”, Fundamental Theory and Applications. Vol.40, pp.147-156, 1993.

[23] Sheikhani, A. Behnam, H. Mohammadi, M.vR. Noroozian, M. “Analysis of Guantitative Electroencephalogram Background Activity in Autism Disease Patients with Lempel-Zive Complexity and Short Time Fourier Transform Measure”, 4th Conference of the IEEE-EMBS. Cambridge, UK, pp.19-22, 2007.