نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشیار،دانشکده مهندسی مکانیک، دانشگاه کاشان

2 دانشجوی دکتری، دانشکده مهندسی مکانیک، دانشگاه کاشان

چکیده

در این مقاله یک حل غیرخطی برای پاسخ الکترو-مگنتو-ترمو-الاستیک کره هوشمند ساخته شده از ماده پلیمری پیزوالکتریک تقویت شده با نانولوله‌های چند جداره کربنی در سه درصد حجمی مختلف بررسی شده است. کره تحت فشار داخلی و خارجی، یک گرادیان دما، یک میدان مغناطیسی و یک اختلاف پتانسیل الکتریکی قرار داده شده است. با استفاده از معادله تعادل، سازگاری، معادله الکترودینامیک ماکسول ، کوپلینگ الکترومکانیکی و معادلات پتانسیل الکتریکی برای شارژ الکتریکی و روابط تنش کرنش یک معادله دیفرانسیل غیرخطی شامل جابجایی شعاعی برای مخزن کروی بدست آمده است. می‌توان نتیجه‌گیری کرد که با درصد حجمی مناسب از نانولوله‌های چند جداره کربنی مقاومت مخزن تحت فشار نانو کامپوزیتی افزایش یافته است. همچنین با اعمال یک اختلاف پتانسیل الکتریکی و میدان مغناطیسی مناسب تغییر شکل مخزن کروی را می‌توان کنترل نمود و با توجه به خصوصیات فیزیکی و مکانیکی مناسب از قبیل وزن کم و استحکام قابل قبول و کنترل پذیری برای استفاده در مخازن دریایی پیشنهاد می‌شود.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Nonlinear electro-magneto-thermo-elastic response of smart nano-composite sphere made of reinforced piezoelectric polymer considering the effect of MWCNT volume fraction

نویسندگان [English]

  • A Loghman 1
  • H Tourang 2
  • M Azami 2

چکیده [English]

In this article a nonlinear solution is developed for electro-magneto-thermo-elastic response of a smart hollow sphere made of piezoelectric polymer material reinforced with multi-walled carbon nanotube (MWCNT) for three different volume fractions. The sphere is exposed to internal and external pressures, a thermal gradient, a magnetic field and an electric potential difference. By using the equations of equilibrium, compatibility, Maxwell electrodynamics equations, electro mechanical coupling and electric potential equations for electric charge and stress–strain relationships a nonlinear differential equation in terms of radial displacements for spherical vessel has been derived. It has been concluded that suitable volume fraction of MWCNT enhances strength of the nano-composite pressure vessel. Also it has been found that by imposing an appropriate electric potential and magnetic field deformation of the sphere can be controlled. according to suitable mechanical properties and acceptable strength and ability of controlling it is suggested for using in maritime vessels.

کلیدواژه‌ها [English]

  • Piezoelectric polymer
  • nonlinear electro-magneto-thermo-elastic
  • thick-walled sphere
  • smart nano-composite

[1] Wang, X. and Zhong, Z., "A Finitely Long Circular Cylindrical Shell of Piezoelectric/Piezomagnetic Composite under Pressuring and Temperature Change", International Journal of Engineering Science. Vol.41, No.20,  pp. 2429-2445, 2003.

[2] Eslami, M., Babaei, M., and Poultangari, R., "Thermal and Mechanical Stresses in a Functionally Graded Thick Sphere", International Journal of Pressure Vessels and Piping. Vol. 82, No.7,  pp. 522-527, 2005.

[3] Moisala, A., Li, Q., Kinloch, I., and Windle, A., " Thermal and Electrical Conductivity of Single-and Multi-walled Carbon Nanotube-epoxy Composites", Composites Science and Technology. Vol. 66, No.10,  pp.1285-1288, 2006.

[4] Seidel, G. D. and Lagoudas, D. C., "Micromechanical Analysis of the Effective Elastic Properties of Carbon Nanotube Reinforced composites", Mechanics of Materials. vol.38, No.8,  pp. 884-907, 2006.

[5] Salehi-Khojin, A. and Jalili, N." A Comprehensive Model for Load Transfer in Nanotube Reinforced Piezoelectric Polymeric Composites Subjected to Electro-Thermo-Mechanical Loadings", Composites Part B: Engineering. vol. 39, No.6,  pp. 986-998, Oct. 2008.

[6] Kong, T., Li, D., and Wang, X., "Thermo-Magneto-Dynamic Stresses and Perturbation of Magnetic Field Vector in a Non-Homogeneous Hollow Cylinder", Applied Mathematical Modelling. Vol.33, No.7,  pp.2939-2950, 2009.

[7] Wang, H., Dong, K., Men, F., Yan, Y., and Wang, X., "Influences of Longitudinal Magnetic Field on Wave Propagation in Carbon Nanotubes Embedded in Elastic Matrix", Applied Mathematical Modelling. vol.34, No.4,  pp. 878-889, 2010.

[8] Alashti, R. A., Khorsand, M., and Tarahhomi, M., "Thermo-elastic Analysis of a Functionally Graded Spherical Shell with Piezoelectric Layers by Differential Quadrature method", Scientia Iranica. Vol.20, No.1,  pp.109-119, 2013.

[9] Arani, A. G., Kolahchi, R., Barzoki, A. M., and Loghman, A., "Electro-thermo-mechanical behaviors of FGPM spheres using analytical method and ANSYS software", Applied Mathematical Modelling. Vol.36, No.1,  pp.139-157, 2012.

[10]  Xu, Y., Wu, Q., Lei, Y., and Yao, F., "Creep Behavior of Bagasse Fiber Reinforced Polymer Composites", Bioresource technology. Vol.101, No.9,  pp. 3280-3286, 2010.

[11]  Jia, Y., Peng, K., Gong, X.-l., and Zhang, Z." Creep and recovery of polypropylene/carbon nanotube composites", International Journal of Plasticity. Vol.27, No.8,  pp. 1239-1251, 2011.

[12]  Arani, A. G., Mobarakeh, M. R., Shams, S., and Mohammadimehr, M., "The Effect of CNT Volume Fraction on the Magneto-Thermo-Electro-Mechanical Behavior of Smart Nanocomposite Cylinder", Journal of mechanical science and technology. Vol.26, No.8,  pp. 2565-2572, 2012.

[13]  Omidi, M., DT, H. R., Milani, A. S., Seethaler, R. J., and Arasteh, R." Prediction of the mechanical characteristics of multi-walled carbon nanotube/epoxy composites using a new form of the rule of mixtures", Carbon. Vol.48, No.11,  pp. 3218-3228, 2010.

[14]  Lau, K.-T., Chipara, M., Ling, H.-Y., and Hui, D." On the effective elastic moduli of carbon nanotubes for nanocomposite structures", Composites Part B: Engineering. vol. 35(2),  pp. 95-101, 2004.

[15]  Newsome, R. and Andrei, E." Measurement of the pyroelectric coefficient of poly (vinylidene fluoride) down to 3 K", Physical Review B. vol. 55(11),  p. 7264, 1997.

[16]  Tang, X.G., Hou, M., Zou, J., Truss, R., and Zhu, Z." The Creep Behaviour of Poly(vinylidene Fluoride)/ “Bud-Branched” Nanotubes Nanocomposites", Composites Science and Technology. vol.72, No.14,  pp.1656-1664, Oct. 2012.

[17]  Jalili, N., "Piezoelectric-based Vibration Control: from Macro to Micro/nano Scale Systems", Springer Science & Business Media, 2009.

[18]  Fung, Y.-c. and Fung, Y., "Foundations of Solid Mechanics", Vol. 351, Prentice-Hall Englewood Cliffs, NJ, 1965.

[19]  Tiersten, H. F., "Linear Piezoelectric Plate Vibrations": Springer, 1969.

[20]  Ghorbanpour Arani, A., Kolahchi, R., Mosallaie Barzoki, A. A., and Loghman, A., "The Effect of Time-Dependent Creep on Electro-Thermo-Mechanical Behaviors of Piezoelectric Sphere using Mendelson's Method", European Journal of Mechanics - A/Solids. Vol.37,  pp.318-328, Jan. 2013.

[21]  Loghman, A., Aleayoub, S. M. A., and Hasani Sadi, M., "Time-dependent Magneto Thermoelastic Creep Modeling of FGM Spheres using Method of Successive Elastic Solution", Applied Mathematical Modelling. Vol. 36, No.2,  pp. 836-845, Mar. 2012.

[22]  Hosseini Kordkheili, S. A. and Livani, M., "Thermoelastic Creep Analysis of a Functionally Graded Various Thickness Rotating Disk with Temperature-dependent Material Properties", International Journal of Pressure Vessels and Piping. vol.111,  pp.63-74, Nov. 2013.

[23]  Loghman, A. and Tourang, H., "Non-Stationary Electro-Thermo-Mechanical Creep Response and Smart Deformation Control of Thick-walled Sphere Made of Polyvinylidene Fluoride", Journal of the Brazilian Society of Mechanical Sciences and Engineering.  pp.1-15, Sep. 2015.

justify:inter-ideograph;text-indent:-14.4pt;mso-list: l0 level1 lfo1;tab-stops:14.2pt 21.3pt;direction:ltr;unicode-bidi:embed'>[18]   Medici. D., “Experimental Studies of Wind Turbine Wakes Power Optimisation and Meandering”, Chapter 2 and 3, P. 20, 2005.

 

[19]   ArabGolarche, A., Moghiman, M., Javadi MalAbad, S. M., Numerical simulation of Darrieus wind Turbine using 6DOF Model to Consider the Effect of Inertia and the Fluid-Solid
Interaction, Modares Mechanical Engineering, Vol.15, No.12, pp.143-152, 2015 (In Persian).

[20] Castelli, Englaro, Benini, “The Darroeus Wind Turbine: Proposal for a New Performance Prediction Model Based on CFD”, Vol.36, pp. 4919-4934, 2011.